
Model Predictive Control Toolbox™
Reference

Alberto Bemporad
N. Lawrence Ricker
Manfred Morari

R2022a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox™ Reference
© COPYRIGHT 2005–2022 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
October 2004 First printing New for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.2.1 (Release 14SP3)
March 2006 Online only Revised for Version 2.2.2 (Release 2006a)
September 2006 Online only Revised for Version 2.2.3 (Release 2006b)
March 2007 Online only Revised for Version 2.2.4 (Release 2007a)
September 2007 Online only Revised for Version 2.3 (Release 2007b)
March 2008 Online only Revised for Version 2.3.1 (Release 2008a)
October 2008 Online only Revised for Version 3.0 (Release 2008b)
March 2009 Online only Revised for Version 3.1 (Release 2009a)
September 2009 Online only Revised for Version 3.1.1 (Release 2009b)
March 2010 Online only Revised for Version 3.2 (Release 2010a)
September 2010 Online only Revised for Version 3.2.1 (Release 2010b)
April 2011 Online only Revised for Version 3.3 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.1.1 (Release 2012b)
March 2013 Online only Revised for Version 4.1.2 (Release 2013a)
September 2013 Online only Revised for Version 4.1.3 (Release R2013b)
March 2014 Online only Revised for Version 4.2 (Release R2014a)
October 2014 Online only Revised for Version 5.0 (Release R2014b)
March 2015 Online only Revised for Version 5.0.1 (Release 2015a)
September 2015 Online only Revised for Version 5.1 (Release 2015b)
March 2016 Online only Revised for Version 5.2 (Release 2016a)
September 2016 Online only Revised for Version 5.2.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2.2 (Release 2017a)
September 2017 Online only Revised for Version 6.0 (Release 2017b)
March 2018 Online only Revised for Version 6.1 (Release 2018a)
September 2018 Online only Revised for Version 6.2 (Release 2018b)
March 2019 Online only Revised for Version 6.3 (Release 2019a)
September 2019 Online only Revised for Version 6.3.1 (Release 2019b)
March 2020 Online only Revised for Version 6.4 (Release 2020a)
September 2020 Online only Revised for Version 7.0 (Release 2020b)
March 2021 Online only Revised for Version 7.1 (Release 2021a)
September 2021 Online only Revised for Version 7.2 (Release 2021b)
March 2022 Online only Revised for Version 7.3 (Release 2022a)

Apps
1

Functions
2

Objects
3

Blocks
4

v

Contents

Apps

1

MPC Designer
Design and simulate model predictive controllers

Description
The MPC Designer app lets you design and simulate model predictive controllers in MATLAB® and
Simulink®.

Using this app, you can:

• Interactively design model predictive controllers and validate their performance using simulation
scenarios

• Obtain linear plant models by linearizing Simulink models (requires Simulink Control Design™)
• Review controller designs for potential run-time stability or numerical issues
• Compare response plots for multiple model predictive controllers
• Generate Simulink models with an MPC controller and plant model
• Generate MATLAB scripts to automate MPC controller design and simulation tasks

Limitations

The following advanced MPC features are not available in the MPC Designer app.

• Explicit MPC design
• Adaptive MPC design
• Nonlinear MPC design
• Mixed input/output constraints (setconstraint)
• Terminal weight specification (setterminal)
• Custom state estimation (setEstimator)
• Sensitivity analysis (sensitivity)
• Alternative cost functions with off-diagonal weights
• Specification of initial plant and controller states for simulation
• Specification of nominal state values using mpcObj.Model.Nominal.X and

mpcObj.Model.Nominal.DX
• Updating weights, constraints, MV targets, and external MVs online during simulations

If your application requires any of these features, design and simulate your controller at the
command line. You can also run simulations in Simulink when using these features.

When using MPC Designer in MATLAB Online™, the following features are not available.

• Finding an operating point for linearizing a Simulink model using trimming or simulation
snapshots. Instead, you must linearize your model at the model initial conditions.

• Generating Simulink models for your controller and plant.

1 Apps

1-2

Open the MPC Designer App
• MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app

icon.
• MATLAB command prompt: Enter mpcDesigner.
• Simulink model editor: In the MPC Controller Block Parameters dialog box, click Design.

Examples
• “Design Controller Using MPC Designer”
• “Design MPC Controller in Simulink”
• “Compare Multiple Controller Responses Using MPC Designer”
• “Generate MATLAB Code from MPC Designer”
• “Generate Simulink Model from MPC Designer”

 MPC Designer

1-3

Programmatic Use
mpcDesigner opens the MPC Designer app. You can then import a plant or controller to start the
design process, or open a saved design session.

mpcDesigner(plant) opens the app and creates a default MPC controller using plant as the
internal prediction model. Specify plant as an ss, tf, or zpk LTI model.

If plant is a stable, continuous-time LTI system, MPC Designer sets the controller sample time to
0.1 Tr, where Tr is the average rise time of the plant. If plant is an unstable, continuous-time system,
MPC Designer sets the controller sample time to 1.

By default, plant input and output signals are treated as manipulated variables and measured outputs
respectively. To specify a different input/output channel configuration, use setmpcsignals before
opening MPC Designer.

You can also specify plant as a linear System Identification Toolbox™ model, such as an idss or idtf
system. The app converts the identified model to a state-space system, discarding any noise channels.
To convert noise channels to unmeasured disturbances, convert the identified model to a state-space
model using the 'augmented' option. For more information on identifying plant models, see
“Identify Plant from Data”.

mpcDesigner(MPCobj) opens the app and imports the model predictive controller MPCobj from the
MATLAB workspace. To create an MPC controller, use mpc.

mpcDesigner(MPCobjs) opens the app and imports multiple MPC controllers specified in the cell
array MPCobjs. All of the controllers in MPCobjs must have the same input/output channel
configuration.

mpcDesigner(MPCobjs,names) additionally specifies controller names when opening the app with
multiple MPC controllers. Specify names as a cell array of character vectors or string array with the
same length as MPCobjs. Specify a unique name for each controller.

mpcDesigner(sessionFile) opens the app and loads a previously saved session. Specify
sessionFile as one of the following:

• The name of a session data file in the current working directory or on the MATLAB path, specified
as a character vector or string. To save session data to disk, in the MPC Designer app, on the

MPC Designer tab, click Save Session. The saved session data includes all plants,
controllers, and scenarios in the Data Browser, the current MPC structure, and the current plot
configuration.

• A previously loaded SessionData object in the MATLAB workspace. To load a SessionData
object from a session data file, at the command line, enter:

load sessionFile

Compatibility Considerations
Support for opening MPC Design Tool sessions saved before release R2015b has been
removed
Errors starting in R2021b

1 Apps

1-4

Support for opening MPC Design Tool sessions saved before release R2015b has been removed in
release R2021b.

If you have sessions saved before release R2015b, open and resave the session files using MPC
Designer in any release from R2015b through R2021a.

See Also
Functions
mpc | sim

Topics
“Design Controller Using MPC Designer”
“Design MPC Controller in Simulink”
“Compare Multiple Controller Responses Using MPC Designer”
“Generate MATLAB Code from MPC Designer”
“Generate Simulink Model from MPC Designer”

Introduced in R2015b

 MPC Designer

1-5

Functions

2

buildMEX
Build MEX file that solves an MPC control problem

Syntax
mexLinFcn = buildMEX(mpcobj,mexName,coreData,stateData,onlineData)

mexNlnFcn = buildMEX(nlobj,mexName,coreData,onlineData)
mexFcn = buildMEX(nlobj,mexName,coreData,onlineData,mexConfig)

Description
Linear MPC

mexLinFcn = buildMEX(mpcobj,mexName,coreData,stateData,onlineData) builds a MEX
file that solves a linear MPC control problem faster than mpcmove. The MEX file is created in the
current working folder.

Nonlinear MPC

mexNlnFcn = buildMEX(nlobj,mexName,coreData,onlineData) builds a MEX file that solves
a nonlinear MPC control problem faster than nlmpcmove. The MEX file is created in the current
working folder.

mexFcn = buildMEX(nlobj,mexName,coreData,onlineData,mexConfig) generates a MEX
function using the code generation configuration object mexConfig. Use this syntax to customize
your MEX code generation.

Examples

Simulate Linear MPC Controller Using MEX File

Create a plant model and design an MPC controller for the plant, with sample time 0.1.

plant = drss(1,1,1);plant.D = 0;
mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Simulate the plant using mpcmove for 5 steps.

x = 0;
xc = mpcstate(mpcobj);

-->No sample time provided for plant model. Assuming sample time = controller's sample time = 0.1.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

2 Functions

2-2

for i=1:5
 % Update plant output.
 y = plant.C*x;
 % Compute control actions.
 u = mpcmove(mpcobj,xc,y,1);
 % Update plant state.
 x = plant.A*x + plant.B*u;
end

Display the final value of the plant output, input and next state.

[y u x]

ans = 1×3

 0.9999 0.3057 -2.3063

Generate data structures and build mex file.

[coreData,stateData,onlineData] = getCodeGenerationData(mpcobj);
mexfun = buildMEX(mpcobj, 'myMPCMex', coreData, stateData, onlineData);

Generating MEX function "myMPCMex" from linear MPC to speed up simulation.
Code generation successful.

MEX function "myMPCMex" successfully generated.

Simulate the plant using the mex file myMPCmex, which you just generated, for 5 steps.

x=0;
for i = 1:5
 % Update plant output.
 y = plant.C*x;
 % Update measured output in online data.
 onlineData.signals.ym = y;
 % Update reference signal in online data.
 onlineData.signals.ref = 1;
 % Compute control actions.
 [u,stateData] = myMPCMex(stateData,onlineData);
 % Update plant state.
 x = plant.A*x + plant.B*u;
end

Display the final value of the plant output, input and next state.

[y u x]

ans = 1×3

 0.9999 0.3057 -2.3063

Simulate Nonlinear MPC Controller Using MEX File

Create a nonlinear MPC controller with four states, two outputs, and one input.

 buildMEX

2-3

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous-time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter Ts to represent the sample time. Specify the
number of parameters and create a parameter vector.

nlobj.Model.NumberOfParameters = 1;
params = {Ts};

Specify the output function of the model, passing the sample time parameter as an input argument.

nlobj.Model.OutputFcn = "pendulumOutputFcn";

Define standard constraints for the controller.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;
nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

Validate the prediction model functions.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj,x0,u0,[],params);

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Only two of the plant states are measurable. Therefore, create an extended Kalman filter for
estimating the four plant states. Its state transition function is defined in pendulumStateFcn.m and
its measurement function is defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn,@pendulumMeasurementFcn);

Define initial conditions for the simulation, initialize the extended Kalman filter state, and specify a
zero initial manipulated variable value.

x0 = [0;0;-pi;0];
y0 = [x0(1);x0(3)];

2 Functions

2-4

EKF.State = x0;
mv0 = 0;

Create code generation data structures for the controller, specifying the initial conditions and
parameters.

[coreData,onlineData] = getCodeGenerationData(nlobj,x0,mv0,params);

Specify the output reference value in the online data structure.

onlineData.ref = [0 0];

Build a MEX function for solving the nonlinear MPC control problem. The MEX function is created in
the current working directory.

mexFcn = buildMEX(nlobj,"myController",coreData,onlineData);

Generating MEX function "myController" from nonlinear MPC to speed up simulation.
Code generation successful.

MEX function "myController" successfully generated.

Run the simulation for 10 seconds. During each control interval:

1 Correct the previous prediction using the current measurement.
2 Compute optimal control moves using the MEX function. This function returns the computed

optimal sequences in onlineData. Passing the updated data structure to the MEX function in
the next control interval provides initial guesses for the optimal sequences.

3 Predict the model states.
4 Apply the first computed optimal control move to the plant, updating the plant states.
5 Generate sensor data with white noise.
6 Save the plant states.

mv = mv0;
y = y0;
x = x0;
Duration = 10;
xHistory = x0;
for ct = 1:(Duration/Ts)
 % Correct previous prediction
 xk = correct(EKF,y);
 % Compute optimal control move
 [mv,onlineData] = myController(xk,mv,onlineData);
 % Predict prediction model states for the next iteration
 predict(EKF,[mv; Ts]);
 % Implement first optimal control move
 x = pendulumDT0(x,mv,Ts);
 % Generate sensor data
 y = x([1 3]) + randn(2,1)*0.01;
 % Save plant states
 xHistory = [xHistory x];
end

Plot the resulting state trajectories.

figure
subplot(2,2,1)

 buildMEX

2-5

plot(0:Ts:Duration,xHistory(1,:))
xlabel('time')
ylabel('z')
title('cart position')
subplot(2,2,2)
plot(0:Ts:Duration,xHistory(2,:))
xlabel('time')
ylabel('zdot')
title('cart velocity')
subplot(2,2,3)
plot(0:Ts:Duration,xHistory(3,:))
xlabel('time')
ylabel('theta')
title('pendulum angle')
subplot(2,2,4)
plot(0:Ts:Duration,xHistory(4,:))
xlabel('time')
ylabel('thetadot')
title('pendulum velocity')

Input Arguments
mpcobj — Model predictive controller
mpc object | explicitMPC object

Model predictive controller, specified as one of the following:

2 Functions

2-6

• mpc object — Implicit MPC controller
• explicitMPC object — Explicit MPC controller created using generateExplicitMPC.

nlobj — Nonlinear model predictive controller
nlmpc object | nlmpcMultistage object

Nonlinear model predictive controller, specified as an nlmpc or nlmpcMultistage object.

Your controller must use the default fmincon solver with the SQP algorithm. Also, your controller
must not use anonymous functions for its prediction model, custom cost function, or custom
constraint functions.

mexName — MEX function name
string | character vector

MEX function name, specified as a string or character vector.

coreData — Controller configuration parameters
structure

Nonlinear MPC configuration parameters that are constant at run time, specified as a structure
generated using getCodeGenerationData.

stateData — Linear controller state data structure
structure

Linear controller state data structure at run time, specified as a structure generated using
getCodeGenerationData.

onlineData — Initial online controller data
structure

Initial online controller data, specified as a structure generated using getCodeGenerationData.
For more information on setting the fields of onlineData, see nlmpcmoveCodeGeneration.

mexConfig — Code generation configuration object
MexCodeConfig object

Code generation configuration object, specified as a MexCodeConfig object.

To create the configuration object, use the following code.

mexConfig = coder.config('mex');

To customize your MEX code generation, modify the settings of this object. For example, to detect
run-time memory access violations during debugging, set IntegrityChecks to true.

mexConfig.IntegrityChecks = true;

By default, to improve the performance of the generated code, checks such as IntegrityChecks
and ResponsivenessChecks are disabled by buildMEX.

buildMEX overwrites the following configuration settings with the values indicated.

 buildMEX

2-7

Configuration Setting Value
cfg.DynamicMemoryAllocation 'AllVariableSizeArrays'
cfg.ConstantInputs 'Remove'

Output Arguments
mexLinFcn — Generated MEX function for linear MPC
function handle

Generated MEX function for linear MPC, returned as a function handle. This MEX function has the
following signature.

[mv,newStateData,info] = mexLinFcn(stateData,onlineData)

The MEX function has the following input arguments, which are the same as the corresponding input
arguments of mpcmoveCodeGeneration, except configData, which is embedded in mexLinFcn .

Input Argument Description
stateData Current state data. Structure containing the state of the linear

MPC controller. For more information on setting the fields of
onlineData, see mpcmoveCodeGeneration

onlineData Online controller data that you must update at run time, specified
as a structure. Generate the initial structure using
getCodeGenerationData. For more information on setting the
fields of onlineData, see mpcmoveCodeGeneration.

The MEX function has the following output arguments, which are the same as the output arguments
of mpcmoveCodeGeneration.

Output Argument Description
mv Optimal manipulated variable control action, returned as a

column vector of length Nmv, where Nmv is the number of
manipulated variables.

newStateData Updated state data. Structure containing the updated state of
the linear MPC controller. For more information on setting the
fields of onlineData, see mpcmoveCodeGeneration

info Solution details, returned as a structure.

To simulate a controller using the generated MEX function, use the initial online data structure
onlineData for the first control interval. For subsequent control intervals, modify the online data in
newOnlineData and pass the updated structure to the MEX function as onlineData.

mexNlnFcn — Generated MEX function for nonlinear MPC
function handle

Generated MEX function for nonlinear MPC, returned as a function handle. This MEX function has
the following signature.

[mv,newOnlineData,info] = mexNlnFcn(x,lastMV,onlineData)

2 Functions

2-8

The MEX function has the following input arguments, which are the same as the corresponding input
arguments of nlmpcmoveCodeGeneration.

Input Argument Description
x Current prediction model states, specified as a vector of length

Nx, where Nx is the number of prediction model states.
lastMV Control signals used in plant at previous control interval,

specified as a vector of length Nmv, where Nmv is the number of
manipulated variables.

onlineData Online controller data that you must update at run time, specified
as a structure. Generate the initial structure using
getCodeGenerationData. For more information on setting the
fields of onlineData, see nlmpcmoveCodeGeneration.

The MEX function has the following output arguments, which are the same as the output arguments
of nlmpcmoveCodeGeneration.

Output Argument Description
mv Optimal manipulated variable control action, returned as a

column vector of length Nmv, where Nmv is the number of
manipulated variables.

newOnlineData Updated online controller data, returned as a structure. This
structure is the same as onlineData, except that the decision
variable initial guesses are updated.

info Solution details, returned as a structure.

To simulate a controller using the generated MEX function, use the initial online data structure
onlineData for the first control interval. For subsequent control intervals, modify the online data in
newOnlineData and pass the updated structure to the MEX function as onlineData.

See Also
mpc | nlmpc | mpcmove | nlmpcmove | mpcmoveCodeGeneration | nlmpcmoveCodeGeneration |
getCodeGenerationData

Topics
“Parallel Parking Using Nonlinear Model Predictive Control”

Introduced in R2020a

 buildMEX

2-9

cloffset
Compute closed-loop DC gain from output disturbances to measured outputs assuming constraints
are inactive at steady state

Syntax
dcgain = cloffset(MPCobj)

Description
Use this function to calculate the steady state output sensitivity of the closed loop. A zero value
means that the measured plant output can track the desired output reference setpoint.

dcgain = cloffset(MPCobj) returns the DC gain matrix dcgain. mpcobj is the MPC object
specifying the controller for which the closed-loop gain is calculated.

Computing the Effect of Output Disturbances

Relying on the superposition of effects principle, the gain is computed by zeroing references,
measured disturbances, and unmeasured input disturbances.

Examples

Calculate steady state output sensitivity of MPC in closed loop

Create a plant, a corresponding MPC object, and calculate the closed loop static gain (this is also
referred to as steady state loop output sensitivity).

mpcverbosity off; % turn off mpc messaging
plant=tf(1,[1 1],0.2); % create plant (0.2 seconds sampling time)
mpcobj=mpc(plant,0.2); % create mpc object (0.2 second sampling time)

2 Functions

2-10

cloffset(mpcobj) % calculate steady state output sensitivity of closed loop

ans =

 0

A zero gain (which is typically the result of the controller having
% integrators as input or output disturbance models) means that the
% measured plant output will track the desired output reference setpoint.

zpk(mpcobj) % convert unconstrained MPC to zero/pole/gain form

ans =

 From input "MO1" to output "MV1":
 0.45205 z^2 (z-1.5)

 (z-1) (z-0.02575) (z+0.02485)

Sample time: 0.2 seconds
Discrete-time zero/pole/gain model.

Converting the unconstrained controller to zpk form shows that the pole in z=1, (resulting from the
default noise model being an integrator), causes the controller static gain to approach infinity, in turn
causing the closes loop output sensitivity to be zero at steady state (z=1). This allows the controller
to successfully track the output reference signal.

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments
dcgain — Steady state closed loop output sensitivity
matrix

The steady state closed loop output sensitivity dcgain is an nym-by-nym matrix , where nym is the
number of measured plant outputs.dcgain(i,j) represents the gain from an additive (constant)
disturbance on output j to measured output i. If row i contains all zeros, there will be no steady-
state offset on output i, and that the controller can achieve perfect tracking of the ith component of
an output reference setpoint (assuming constraints are inactive at steady state).

See Also
mpc | ss

Topics
“Compute Steady-State Gain”

Introduced before R2006a

 cloffset

2-11

compare
Compare two MPC objects

Syntax
yesno = compare(mpcobj1,mpcobj2)

Description
yesno = compare(mpcobj1,mpcobj2) compares the contents of the two MPC objects mpcobj1
and, mpcobj2 given as input arguments. If the design specifications (models, weights, horizons, etc.)
are identical, then the returned value yesno is equal to 1.

Note compare may return yesno = 1 even if the two objects are not identical. For instance,
mpcobj1 may have been initialized while mpcobj2 may have not, so that they may have different
sizes in memory. In any case, if yesno = 1, the behavior of the two controllers will be identical.

Examples

Compare two MPC objects

Create two MPC controllers with different control horizons and compare them.

plant=zpk([],2,1); % create plant
mpcverbosity off; % turn off MPC messaging
mpcobj1=mpc(plant,0.1,10,2); % create an mpc controller with a control horizon of 2 steps
mpcobj2=mpc(plant,0.1,10,3); % create an mpc controller with a control horizon of 3 steps

compare(mpcobj1,mpcobj2) % compare the controllers

ans =
 logical
 0

Input Arguments
mpcobj1 — MPC controller object
mpc object

First MPC object to compare
Example: mpc(tf(1,[1 0]),1,12,3)

mpcobj2 — MPC controller object
mpc object

Second MPC object to compare
Example: mpc(tf(1,[1 0]),1,12,4)

2 Functions

2-12

Output Arguments
yesno — Comparison result
0 | 1

The returned value is a logical 1 (that is true) if the design specifications (models, weights, horizons,
etc.) are identical.

See Also
mpc

Introduced before R2006a

 compare

2-13

convertToMPC
Convert nlmpc object into one or more mpc objects

Syntax
mpcobj = convertToMPC(nlmpcobj,states,inputs)
mpcobj = convertToMPC(nlmpcobj,states,inputs,MOIndex)
mpcobj = convertToMPC(nlmpcobj,states,inputs,MOIndex,parameters)

Description
In practice, when producing comparable performance, linear MPC is preferred over nonlinear MPC
due to its higher computational efficiency. Using the convertToMPC function, you can convert a
nonlinear MPC controller into one or more linear MPC controllers at specific operating points. You
can then implement gain-scheduled or adaptive MPC using the linear controllers and compare their
performance to the benchmark nonlinear MPC controller. For an example, see “Nonlinear and Gain-
Scheduled MPC Control of an Ethylene Oxidation Plant”.

To use convertToMPC, your nonlinear controller must not have custom cost or constraint functions,
since these custom functions are not supported for linear MPC controllers.

mpcobj = convertToMPC(nlmpcobj,states,inputs) converts the nonlinear MPC controller
object nlmpcobj into one or more linear MPC controller objects at the nominal conditions specified
in states and inputs. The number of linear MPC controllers, N, is equal to the number of rows in
states and inputs.

mpcobj = convertToMPC(nlmpcobj,states,inputs,MOIndex) specifies the indices of the
measured outputs. Use this syntax when your controller has unmeasured output signals.

mpcobj = convertToMPC(nlmpcobj,states,inputs,MOIndex,parameters) specifies the
values of prediction model parameters for each nominal condition. Use this syntax when your
controller prediction model has optional parameters.

Examples

Create Linear MPC Controllers from Nonlinear MPC Controller

Create a nonlinear MPC controller with four states, one output variable, one manipulated variable,
and one measured disturbance.

nlobj = nlmpc(4,1,'MV',1,'MD',2);

Specify the controller sample time and horizons.

nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 3;

Specify the state function of the prediction model.

nlobj.Model.StateFcn = 'oxidationStateFcn';

2 Functions

2-14

Specify the prediction model output function and the output variable scale factor.

nlobj.Model.OutputFcn = @(x,u) x(3);
nlobj.OutputVariables.ScaleFactor = 0.03;

Specify the manipulated variable constraints and scale factor.

nlobj.ManipulatedVariables.Min = 0.0704;
nlobj.ManipulatedVariables.Max = 0.7042;
nlobj.ManipulatedVariables.ScaleFactor = 0.6;

Specify the measured disturbance scale factor.

nlobj.MeasuredDisturbances.ScaleFactor = 0.5;

Compute the state and input operating conditions for three linear MPC controllers using the fsolve
function.

options = optimoptions('fsolve','Display','none');

uLow = [0.38 0.5];
xLow = fsolve(@(x) oxidationStateFcn(x,uLow),[1 0.3 0.03 1],options);

uMedium = [0.24 0.5];
xMedium = fsolve(@(x) oxidationStateFcn(x,uMedium),[1 0.3 0.03 1],options);

uHigh = [0.15 0.5];
xHigh = fsolve(@(x) oxidationStateFcn(x,uHigh),[1 0.3 0.03 1],options);

Create linear MPC controllers for each of these nominal conditions.

mpcobjLow = convertToMPC(nlobj,xLow,uLow);
mpcobjMedium = convertToMPC(nlobj,xMedium,uMedium);
mpcobjHigh = convertToMPC(nlobj,xHigh,uHigh);

You can also create multiple controllers using arrays of nominal conditions. The number of rows in
the arrays specifies the number controllers to create. The linear controllers are returned as cell array
of mpc objects.

u = [uLow; uMedium; uHigh];
x = [xLow; xMedium; xHigh];
mpcobjs = convertToMPC(nlobj,x,u);

View the properties of the mpcobjLow controller.

mpcobjLow

MPC object (created on 26-Feb-2022 20:07:05):

Sampling time: 1 (seconds)
Prediction Horizon: 10
Control Horizon: 3

Plant Model:

 1 manipulated variable(s) -->| 4 states |
 | |--> 1 measured output(s)
 1 measured disturbance(s) -->| 2 inputs |

 convertToMPC

2-15

 | |--> 0 unmeasured output(s)
 0 unmeasured disturbance(s) -->| 1 outputs |

Indices:
 (input vector) Manipulated variables: [1]
 Measured disturbances: [2]
 (output vector) Measured outputs: [1]

Disturbance and Noise Models:
 Output disturbance model: default (type "getoutdist(mpcobjLow)" for details)
 Measurement noise model: default (unity gain after scaling)

Weights:
 ManipulatedVariables: 0
 ManipulatedVariablesRate: 0.1000
 OutputVariables: 1
 ECR: 100000

State Estimation: Default Kalman Filter (type "getEstimator(mpcobjLow)" for details)

Constraints:
 0.0704 <= u1 <= 0.7042, u1/rate is unconstrained, y1 is unconstrained

Input Arguments
nlmpcobj — Nonlinear MPC controller
nlmpc object

Nonlinear MPC controller, specified as an nlmpc object.

Note Your nlmpc controller object must not have custom cost or constraint functions.

states — Nominal state values
array

Nominal state values, specified as an N-by-Nx array, where Nx is equal to
nlmpcobj.Dimensions.NumberOfStates. Each row of States specifies a nominal set of states to
be used in conversion.

The number of rows in states and inputs must match.

inputs — Nominal input values
array

Nominal input values, specified as an N-by-Nu array, where Nu is equal to
nlmpcobj.Dimensions.NumberOfInputs. Each row of Inputs specifies a nominal set of inputs to
be used in conversion.

The number of rows in states and inputs must match.

MOIndex — Measured output indices
[] (default) | vector

2 Functions

2-16

Measured output indices, specified as a vector of length Ny, where Ny is the number of outputs. If
MOIndex is [], every output is measured. Otherwise, any outputs not listed in MOIndex are
unmeasured.

convertToMPC uses MOIndex to configure the default state estimators in mpcobj.

parameters — Prediction model parameter values
{} (default) | cell array

Prediction model parameter values, specified as an N-by-Np cell array, where Np is equal to
nlmpcobj.Model.NumberOfParameters. Each row of parameters specifies the model parameter
values for a given nominal condition. In each row, the order of the parameters must match the order
specified in the model functions. Each parameter must be a numeric parameter with the correct
dimensions; that is, the dimensions expected by the prediction model functions.

For each nominal condition, these parameters are passed to the state function
(nlmpcobj.Model.StateFcn) and output function (nlmpcobj.Model.OutputFcn) of the
nonlinear MPC controller.

The number of rows in parameters must match the number of rows in states and inputs.

If your controller prediction model has optional parameters, you must specify parameters.

Output Arguments
mpcobj — Linear MPC controllers
mpc object | cell array of mpc objects

Linear MPC controllers created for each nominal condition, returned as one of the following:

• Single mpc object when N = 1.
• Cell array of mpc objects of length N when N > 1. Each object corresponds to one nominal

condition.

convertToMPC copies the following controller properties from nlmpcobj to the controllers in
mpcobj:

• Sample time
• Prediction and control horizons
• Tuning weights
• Bounds on output variables, manipulated variables, and manipulated variable rates
• Scale factors, names, and units for variables and disturbances

If nlmpcobj:

• Has unmeasured disturbance channels, then the controllers in mpcobj have unity gains for their
input and output disturbance models.

• Does not have unmeasured disturbance channels, then the controllers in mpcobj have default
output disturbance models.

Any state bounds in nlmpcobj are dropped during conversion.

 convertToMPC

2-17

See Also
nlmpc

Topics
“Nonlinear MPC”
“Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant”

Introduced in R2018b

2 Functions

2-18

createParameterBus
Create Simulink bus object and configure Bus Creator block for passing model parameters to
Nonlinear MPC Controller block

Syntax
createParameterBus(nlmpcobj,nlmpcblk,busName,parameters)

Description
createParameterBus(nlmpcobj,nlmpcblk,busName,parameters) creates a Simulink.Bus
object, busName, in the MATLAB workspace for passing model parameters to a Nonlinear MPC
Controller block, nlmpcblk. createParameterBus requires you to connect a Bus Creator block to
the Nonlinear MPC Controller block in advance so that it can configure the Bus Creator block to use
the bus object.

Examples

Create Parameter Bus for Nonlinear MPC Controller Block

Create a nonlinear MPC controller with four states, two outputs, and one input.

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous-time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter, Ts, to represent the sample time. Specify the
number of parameters.

nlobj.Model.NumberOfParameters = 1;

Specify the output function of the model, passing the sample-time parameter as an input argument.

nlobj.Model.OutputFcn = @(x,u,Ts) [x(1); x(3)];

Define standard constraints for the controller.

 createParameterBus

2-19

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;
nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

Open Simulink model.

mdl = 'mpc_pendcartNMPC';
open_system(mdl)

In this model, the Nonlinear MPC Controller block is configured to use the controller nlobj.

To use the optional parameter in the prediction model, the model has a Simulink Bus block connected
to the params input port of the Nonlinear MPC Controller block. To configure this bus block to use
the Ts parameter, create a Bus object in the MATLAB® workspace, and configure the Bus Creator
block to use this object. Name the Bus object 'myBusObject'.

createParameterBus(nlobj,[mdl '/Nonlinear MPC Controller'],'myBusObject',{Ts});

bdclose(mdl)

A Simulink Bus object "myBusObject" created in the MATLAB Workspace, and Bus Creator block "mpc_pendcartNMPC/Nonlinear MPC Controller" is configured to use it.

Input Arguments
nlmpcobj — Nonlinear MPC controller
nlmpc object

Nonlinear MPC controller, specified as an nlmpc object.

2 Functions

2-20

nlmpcblk — Block path of Nonlinear MPC Controller block
string | character vector

Block path of Nonlinear MPC Controller block, specified as a string or character vector.

busName — Name of Simulink bus object
string | character vector

Name of Simulink bus object to be created in the MATLAB workspace and set in the Bus Creator
block, specified as a string or character vector.

The corresponding Bus Creator block must already be connected to the params input port of the
Nonlinear MPC Controller block specified by nlmpcblk. Also, the Bus Creator block must have the
correct number of input ports, and these ports must already be properly connected.

parameters — Nominal prediction model parameter values
cell array

Nominal prediction model parameter values, specified as a cell array of length Np, where Np is equal
to nlmpcobj.Model.NumberOfParameters. The order of the parameters must match the order
specified in the model functions, and each parameter must be a numeric parameter with the correct
dimensions.

See Also
Functions
nlmpc | nlmpcmove | nlmpcmoveopt

Blocks
Nonlinear MPC Controller

Topics
“Specify Prediction Model for Nonlinear MPC”

Introduced in R2018b

 createParameterBus

2-21

d2d
Change sampling time of an MPC controller

Syntax
newmpc = d2d(MPCobj,newTs)

Description
Use the Model Predictive Control Toolbox d2d function to change the sampling time of an MPC
controller (see mpc for background).

To resample a generic discrete-time LTI dynamical system instead, see d2d.

newmpc = d2d(MPCobj,newTs) returns the controller newmpc, which is identical to MPCobj except
for the new sample time newTs. This is equivalent to coying MPCobj in a new object newmpc and
assigning a new sample using either newmpc.Ts=newTs or set(newmpc,'Ts',newTs). All models
in newmpc are sampled or resampled when the QP matrices must be computed, for example when
sim or mpcmove are called.

Examples

Change sampling time of MPC controller

Create a plant, a corresponding MPC object, and create a new controller with a different sampling
time.

mpcverbosity off; % turn off mpc messaging
plant=tf(1,[1 1]); % create plant (note the steady state gain)
mpcobj=mpc(plant,1); % create mpc object (1 second sampling time)

newmpc=d2d(mpcobj,0.2); % change sampling time to 0.2 seconds
newmpc.Ts
ans =
 0.2000

newmpc.Ts=1; % change sampling time back to 1 second
compare(newmpc,mpcobj) % compare the two controllers
ans =
 logical
 1

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

2 Functions

2-22

newTs — Sampling Time
positive scalar

This is the new sampling time for the returned, resampled, MPC controller mpcobjTs.
Example: 0.2

Output Arguments
newmpc — MPC controller with the new sampling time
mpc object

This is the returned MPC controller, which is identical to MPCobj except for the fact that its sampling
time is now newTs. The internal models of newmpc are sampled or resampled when the QP matrices
must be computed for the MPC optimization problem to be solved.(for example when sim or mpcmove
are called).

See Also
mpc | set

Introduced before R2006a

 d2d

2-23

generateExplicitMPC
Convert implicit MPC controller to explicit MPC controller

Syntax
EMPCobj = generateExplicitMPC(MPCobj,range)
EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Description
Given a traditional Model Predictive Controller design in the implicit form, convert it to the explicit
form for real-time applications requiring fast sample time.

EMPCobj = generateExplicitMPC(MPCobj,range) converts a traditional (implicit) MPC
controller to the equivalent explicit MPC controller, using the specified parameter bounds. This
calculation usually requires significant computational effort because a multi-parametric quadratic
programming problem is solved during the conversion.

EMPCobj = generateExplicitMPC(MPCobj,range,opt) converts the MPC controller using
additional optimization options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-integrator
plant.

Define the double-integrator plant.

plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a prediction
horizon of 10, and a control horizon of 3.

Ts = 0.1;
p = 10;
m = 3;
MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such as state
values and manipulated variables. To do so, generate a range structure. Then, modify values within
the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

2 Functions

2-24

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;
range.ManipulatedVariable.Min = -1.1;
range.ManipulatedVariable.Max = 1.1;

Use the more robust reduction method for the computation. Use generateExplicitOptions to
create a default options set, and then modify the polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1
Number of parameters: 4
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.
Type 'EMPCobj.Range' for the valid range of parameters.
Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments
MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an mpc object

range — Parameter bounds
structure

Parameter bounds, specified as a structure that you create with the generateExplicitRange
command. This structure specifies the bounds on the parameters upon which the explicit MPC control
law depends, such as state values, measured disturbances, and manipulated variables. For detailed
descriptions of the range parameters, see generateExplicitRange.

opt — optimization options
structure

 generateExplicitMPC

2-25

Optimization options for the conversion computation, specified as a structure that you create with the
generateExplicitOptions function. For detailed descriptions of these options, see
generateExplicitOptions.

Output Arguments
EMPCobj — Explicit MPC controller
explicitMPC object

Explicit MPC controller that is equivalent to the input traditional controller, returned as an
explicitMPC object.

Property Description
MPC Traditional (implicit) controller object used to

generate the explicit MPC controller. You create
this MPC controller using is the mpc command. It
is the first argument to generateExplicitMPC
when you create the explicit MPC controller.

Range 1-D structure containing the parameter bounds
used to generate the explicit MPC controller.
These determine the resulting controller’s valid
operating range. This property is automatically
populated by the range input argument to
generateExplicitMPC when you create the
explicit MPC controller. See
generateExplicitRange for details about this
structure.

OptimizationOptions 1-D structure containing user-modifiable options
used to generate the explicit MPC controller. This
property is automatically populated by the opt
argument to generateExplicitMPC when you
create the explicit MPC controller. See
generateExplicitOptions for details about
this structure.

PiecewiseAffineSolution nr-dimensional structure, where nr is the number
of piecewise affine (PWA) regions required to
represent the control law. The ith element
contains the details needed to compute the
optimal manipulated variables when the solution
lies within the ith region. See “Implementation”.

IsSimplified Logical switch indicating whether the explicit
control law has been modified using the
simplify command such that the explicit
control law approximates the base (implicit) MPC
controller. If the control law has not been
modified, the explicit controller should reproduce
the base controller’s behavior exactly, provided
both operate within the bounds described by the
Range property.

2 Functions

2-26

Tips
• Using Explicit MPC, you will most likely achieve best performance in small control problems,

which involve small numbers of plant inputs/outputs/states as well as the number of constraints.
• Test the implicit controller thoroughly before attempting a conversion. This helps to determine the

range of controller states and other parameters needed to generate the explicit controller.
• Simulate the explicit controller’s performance using the sim or mpcmoveExplicit commands, or

the Explicit MPC Controller block in Simulink.
• generateExplicitMPC displays progress messages in the command window. Use

mpcverbosity to turn off the display.

See Also
mpc | generateExplicitRange | generateExplicitOptions | simplify

Topics
“Explicit MPC Control of a Single-Input-Single-Output Plant”
“Explicit MPC Control of an Aircraft with Unstable Poles”
“Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”
“Explicit MPC”
“Design Workflow for Explicit MPC”

Introduced in R2014b

 generateExplicitMPC

2-27

generateExplicitOptions
Optimization options for explicit MPC generation

Syntax
opt = generateExplicitOptions(MPCobj)

Description
opt = generateExplicitOptions(MPCobj) creates a set of options to use when converting a
traditional MPC controller, MPCobj, to explicit form using generateExplicitMPC. The options set is
returned with all options set to default values. Use dot notation to modify the options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-integrator
plant.

Define the double-integrator plant.

plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a prediction
horizon of 10, and a control horizon of 3.

Ts = 0.1;
p = 10;
m = 3;
MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such as state
values and manipulated variables. To do so, generate a range structure. Then, modify values within
the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;

2 Functions

2-28

range.ManipulatedVariable.Min = -1.1;
range.ManipulatedVariable.Max = 1.1;

Use the more robust reduction method for the computation. Use generateExplicitOptions to
create a default options set, and then modify the polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1
Number of parameters: 4
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.
Type 'EMPCobj.Range' for the valid range of parameters.
Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments
MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command to create a
traditional MPC controller.

Output Arguments
opt — Options for generating explicit MPC controller
structure

Options for generating explicit MPC controller, returned as a structure. When you create the
structure, all the options are set to default values. Use dot notation to modify any options you want to
change. The fields and their default values are as follows.

zerotol — Zero-detection tolerance
1e-8 (default) | positive scalar value

Zero-detection tolerance used by the NNLS solver, specified as a positive scalar value.

removetol — Redundant-inequality-constraint detection tolerance
1e-4 (default) | positive scalar value

Redundant-inequality-constraint detection tolerance, specified as a positive scalar value.

 generateExplicitOptions

2-29

flattol — Flat region detection tolerance
1e-5 (default) | positive scalar value

Flat region detection tolerance, specified as a positive scalar value.

normalizetol — Constraint normalization tolerance
0.01 (default) | positive scalar value

Constraint normalization tolerance, specified as a positive scalar value.

maxiterNNLS — Maximum number of NNLS solver iterations
500 (default) | positive integer

Maximum number of NNLS solver iterations, specified as a positive integer.

maxiterQP — Maximum number of QP solver iterations
200 (default) | positive integer

Maximum number of QP solver iterations, specified as a positive integer.

maxiterBS — Maximum number of bisection method iterations
100 (default) | positive integer

Maximum number of bisection method iterations used to detect region flatness, specified as a positive
integer.

polyreduction — Method for removing redundant inequalities
2 (default) | 1

Method used to remove redundant inequalities, specified as either 1 (robust) or 2 (fast).

See Also
generateExplicitMPC

Introduced in R2014b

2 Functions

2-30

generateExplicitRange
Bounds on explicit MPC control law parameters

Syntax
Range = generateExplicitRange(MPCobj)

Description
Range = generateExplicitRange(MPCobj) creates a structure of parameter bounds based upon
a traditional (implicit) MPC controller object. The range structure is intended for use as an input
argument to generateExplicitMPC. Usually, the initial range values returned by
generateExplicitRange are not suitable for generating an explicit MPC controller. Therefore, use
dot notation to set the values of the range structure before calling generateExplicitMPC.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-integrator
plant.

Define the double-integrator plant.

plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a prediction
horizon of 10, and a control horizon of 3.

Ts = 0.1;
p = 10;
m = 3;
MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such as state
values and manipulated variables. To do so, generate a range structure. Then, modify values within
the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];

 generateExplicitRange

2-31

range.Reference.Min = -2;
range.Reference.Max = 2;
range.ManipulatedVariable.Min = -1.1;
range.ManipulatedVariable.Max = 1.1;

Use the more robust reduction method for the computation. Use generateExplicitOptions to
create a default options set, and then modify the polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1
Number of parameters: 4
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.
Type 'EMPCobj.Range' for the valid range of parameters.
Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments
MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command to create a
traditional MPC controller.

Output Arguments
Range — Parameter bounds
structure

Parameter bounds for generating an explicit MPC controller from MPCobj, returned as a structure.

Initially, each parameter’s minimum and maximum bounds are identical. All such parameters are
considered fixed. When you generate an explicit controller, any fixed parameters must be constant
when the controller operates. This is unlikely to happen in general. Thus, you must specify valid
bounds for all parameters. Use dot notation to set the values of the range structure as appropriate for
your system.

The fields of the range structure are as follows.

State — Bounds on controller state values
structure

2 Functions

2-32

Bounds on controller state values, specified as a structure containing fields Min and Max. Each of Min
and Max is a vector of length nx, where nx is the number of controller states. Range.State.Min and
Range.State.Max contain the minimum and maximum values, respectively, of all controller states.
For example, suppose you are designing a two-state controller. You have determined that the range of
the first controller state is [-1000,1000], and that of the second controller state is [0,2*pi]. Set
these bounds as follows:

Range.State.Min(:) = [-1000,0];
Range.State.Max(:) = [1000,2*pi];

MPC controller states include states from plant model, disturbance model, and noise model, in that
order. Setting the range of a state variable is sometimes difficult when a state does not correspond to
a physical parameter. In that case, multiple runs of open-loop plant simulation with typical reference
and disturbance signals are recommended in order to collect data that reflect the ranges of states.

Reference — Bounds on controller reference signal values
structure

Bounds on controller reference signal values, specified as a structure containing fields Min and Max.
Each of Min and Max is a vector of length ny, where ny is the number of plant outputs.
Range.Reference.Min and Range.Reference.Max contain the minimum and maximum values,
respectively, of all reference signal values. For example, suppose you are designing a controller for a
two-output plant. You have determined that the range of the first plant output is [-1000,1000], and
that of the second plant output is [0,2*pi]. Set these bounds as follows:

Range.Reference.Min(:) = [-1000,0];
Range.Reference.Max(:) = [1000,2*pi];

Usually you know the practical range of the reference signals being used at the nominal operating
point in the plant. The ranges used to generate the explicit MPC controller must be at least as large
as the practical range.

MeasuredDisturbance — Bounds on measured disturbance values
structure

Bounds on measured disturbance values, specified as a structure containing fields Min and Max. Each
of Min and Max is a vector of length nmd, where nmd is the number of measured disturbances. If your
system has no measured disturbances, leave the generated values of this field unchanged.

Range.MeasuredDisturbance.Min and Range.MeasuredDisturbance.Max contain the
minimum and maximum values, respectively, of all measured disturbance signals. For example,
suppose you are designing a controller for a system with two measured disturbances. You have
determined that the range of the first disturbance is [-1,1], and that of the second disturbance is
[0,0.1]. Set these bounds as follows:

Range.Reference.Min(:) = [-1,0];
Range.Reference.Max(:) = [1,0.1];

Usually you know the practical range of the measured disturbance signals being used at the nominal
operating point in the plant. The ranges used to generate the explicit MPC controller must be at least
as large as the practical range.

ManipulatedVariable — Bounds on manipulated variable values
structure

 generateExplicitRange

2-33

Bounds on manipulated variable values, specified as a structure containing fields Min and Max. Each
of Min and Max is a vector of length nu, where nu is the number of manipulated variables.
Range.ManipulatedVariable.Min and Range.ManipulatedVariable.Max contain the
minimum and maximum values, respectively, of all manipulated variables. For example, suppose your
system has two manipulated variables. The range of the first manipulated variable is [-1,1], and
that of the second variable is [0,0.1]. Set these bounds as follows:

Range.ManipulatedVariable.Min(:) = [-1,0];
Range.ManipulatedVariable.Max(:) = [1,0.1];

If manipulated variables are constrained, the ranges used to generate the explicit MPC controller
must be at least as large as these limits.

See Also
mpc | generateExplicitMPC | generateExplicitOptions

Introduced in R2014b

2 Functions

2-34

generatePlotParameters
Parameters for plotSection

Syntax
plotParams = generatePlotParameters(EMPCobj)

Description
plotParams = generatePlotParameters(EMPCobj) creates a structure of parameters for a 2-D
sectional plot of the explicit MPC control law of the explicit MPC controller, EMPCobj. You set the
fields of this structure and use it to generate the plot using the plotSection command.

Examples

Specify Fixed Parameters for 2-D Plot of Explicit Control Law

Define a double integrator plant model and create a traditional implicit MPC controller for this plant.
Constrain the manipulated variable to have an absolute value less than 1.

plant = tf(1,[1 0 0]);
MPCobj = mpc(plant,0.1,10,3);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

MPCobj.MV = struct('Min',-1,'Max',1);

Define the parameter bounds for generating an explicit MPC controller.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];
range.Reference.Min(:) = -2;
range.Reference.Max(:) = 2;
range.ManipulatedVariable.Min(:) = -1.1;
range.ManipulatedVariable.Max(:) = 1.1;

Create an explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range);

Regions found / unexplored: 19/ 0

 generatePlotParameters

2-35

Create a default plot parameter structure, which specifies that all of the controller parameters are
fixed at their nominal values for plotting.

plotParams = generatePlotParameters(EMPCobj);

Allow the controller states to vary when creating a plot.

plotParams.State.Index = [];
plotParams.State.Value = [];

Fix the manipulated variable and reference signal to 0 for plotting.

plotParams.ManipulatedVariable.Index(1) = 1;
plotParams.ManipulatedVariable.Value(1) = 0;
plotParams.Reference.Index(1) = 1;
plotParams.Reference.Value(1) = 0;

Generate the 2-D section plot for the explicit MPC controller.

plotSection(EMPCobj,plotParams)

ans =
 Figure (1: PiecewiseAffineSectionPlot) with properties:

 Number: 1
 Name: 'PiecewiseAffineSectionPlot'
 Color: [1 1 1]
 Position: [360 502 560 420]

2 Functions

2-36

 Units: 'pixels'

 Show all properties

Input Arguments
EMPCobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller for which you want to create a 2-D sectional plot, specified as an Explicit
MPC controller object. Use generateExplicitMPC to create an explicit MPC controller.

Output Arguments
plotParams — Parameters for sectional plot
structure

Parameters for sectional plot of explicit MPC control law, returned as a structure.

As returned by generatePlotParameters, the plotParams structure command fixes all the
control law’s parameters at their nominal values. To obtain the desired plot, eliminate the Index and
Value entries of the two parameters forming the plot axes, and modify fixed values as necessary.
Then, use the plotSection command to display the 2-D sectional plot of the explicit control law’s
PWA regions with the remaining free parameters as the x and y axes.

The fields of the plot-parameters structure are as follows.

State — Fixed controller states
structure

Fixed controller states, specified as a structure having an Index field and a Value field. The field
plotParams.State.Index is a vector that contains the indices of the controller states to fix for the
plot, and plotParams.State.Value contains the corresponding constant state values.

Modify the default value of plotParams.State to generate the desired plot. See “Specify Fixed
Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

Reference — Fixed reference signal values
structure

Fixed reference signal values, specified as a structure having an Index field and a Value field. The
field plotParams.Reference.Index is a vector that contains the indices of the reference signals to
fix for the plot, and plotParams.Reference.Value contains the corresponding constant reference
signal values.

Modify the default value of plotParams.Reference to generate the desired plot. See “Specify
Fixed Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

MeasuredDisturbance — Fixed measured disturbance values
structure

Fixed measured disturbance values, specified as a structure having an Index field and a Value field.
The field plotParams.MeasuredDisturbance.Index is a vector that contains the indices of the

 generatePlotParameters

2-37

measured disturbances to fix for the plot, and plotParams.MeasuredDisturbance.Value
contains the corresponding constant measured disturbance values.

Modify the default value of plotParams.MeasuredDisturbance to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

ManipulatedVariable — Fixed manipulated variable values
structure

Fixed manipulated variable values, specified as a structure having an Index field and a Value field.
The field plotParams.ManipulatedVariable.Index is a vector that contains the indices of the
manipulated variables to fix for the plot, and plotParams.ManipulatedVariable.Value contains
the corresponding constant manipulated variable values.

Modify the default value of plotParams.ManipulatedVariable to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

See Also
generateExplicitMPC | plotSection

Introduced in R2014b

2 Functions

2-38

get
Get property values from MPC object

Syntax
PropertyValue = get(MPCobj,PropertyName)
Struct = get(MPCobj)
get(MPCobj)

Description
Use the Model Predictive Control Toolbox get function to read the property values of an MPC
controller (see mpc for background).

To implement Get/Set interface of standard MATLAB object, see “Implement Set/Get Interface for
Properties”.

PropertyValue = get(MPCobj,PropertyName) returns the current value of the property
PropertyName of the MPC controller MPCobj.

Struct = get(MPCobj) converts the MPC controller MPCobj into a standard MATLAB structure
with the property names as field names and the property values as field values.

get(MPCobj) without a left-side argument displays all properties of MPCobj and their values.

Examples

Get property values from an MPC object

Create plant model and related MPC object

mpcverbosity off; % turn off mpc messages

% create plant model
plant = rss(4,4,4); % random state space
plant.D = 0; % set D matrix to zero

mpcobj=mpc(plant,1);

Get values of some properties

>> get(mpcobj,'Ts')
ans =
 1
>> get(mpcobj,"Ts")
ans =
 1
>> mpcobj.Ts
ans =
 1

 get

2-39

>> get(mpcobj,'ControlHorizon')
ans =
 2
>> get(mpcobj,'Model')
ans =
 struct with fields:

 Plant: [4×4 ss]
 Disturbance: []
 Noise: []
 Nominal: [1×1 struct]

% display all properties
get(mpcobj)
 Ts: 1
 PredictionHorizon (P): 10
 ControlHorizon (C): 2
 Model: [1x1 struct]
 ManipulatedVariables (MV): [1x4 struct]
 OutputVariables (OV): [1x4 struct]
 DisturbanceVariables (DV): []
 Weights (W): [1x1 struct]
 Optimizer: [1x1 struct]
 Notes: {}
 UserData: []
 History: 11-Sep-2020 16:50:19

% get whole MPC structure
WholeMPCStruct=get(mpcobj);

% display History field
WholeMPCStruct.History
ans =
 1.0e+03 *
 2.0200 0.0090 0.0110 0.0160 0.0500 0.0193

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

PropertyName — Name of MPC object property
character array | string

Specify PropertyName as a character array or string that contains the full property name (for
example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'
instead of 'UserData'). You can specify any generic MPC property.
Example: 'Model'

2 Functions

2-40

Output Arguments
PropertyValue — Value of MPC object property
double | matrix | structure | other

The value returned in PropertyValue depends on the specific property of the MPC object. See
mpcprops for more information on MPC object properties.

Struct — Structure containing all property values
double | matrix | structure | other

This is a standard MATLAB structure containing all the property names of the MPC object as field
names and the property values as field values. See mpcprops for more information on MPC object
properties.

Tips
An alternative to the syntax

Value = get(MPCobj,'PropertyName')

is the structure-like referencing

Value = MPCobj.PropertyName

For example,

MPCobj.Ts
MPCobj.p

return the values of the sampling time and prediction horizon of the MPC controller MPCobj.

See Also
mpc | set | mpcprops

Introduced before R2006a

 get

2-41

getCodeGenerationData
Create data structures for mpcmoveCodeGeneration

Syntax
[configData,stateData,onlineData] = getCodeGenerationData(mpcobj)
[___] = getCodeGenerationData(___ ,Name,Value)

Description
Use this function to create data structures for the mpcmoveCodeGeneration function, which
computes optimal control moves for implicit and explicit linear MPC controllers.

For information on generating data structures for nlmpcmoveCodeGeneration, see
getCodeGenerationData.

[configData,stateData,onlineData] = getCodeGenerationData(mpcobj) creates data
structures for use with mpcmoveCodeGeneration.

[___] = getCodeGenerationData(___ ,Name,Value) specifies additional options using one or
more Name,Value pair arguments.

Examples

Create MPC Code Generation Data Structures

Create a plant model, and define the MPC signal types.

plant = rss(3,2,2);
plant.D = 0;
plant = setmpcsignals(plant,'mv',1,'ud',2,'mo',1,'uo',2);

Create an MPC controller.

mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Configure your controller parameters. For example, define bounds for the manipulated variable.

mpcObj.ManipulatedVariables.Min = -1;
mpcObj.ManipulatedVariables.Max = 1;

Create code generation data structures.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj);

2 Functions

2-42

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Specify Options for Creating MPC Code Generation Structures

Create a plant model, and define the MPC signal types.

plant = rss(3,2,2);
plant.D = 0;

Create an MPC controller.

mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Create code generation data structures. Configure options to:

• Use single-precision floating-point values in the generated code.
• Improve computational efficiency by not computing optimal sequence data.
• Run your MPC controller in adaptive mode.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj,...
 'DataType','single','OnlyComputeCost',true,'IsAdaptive',true);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Input Arguments
mpcobj — Model predictive controller
mpc object | explicitMPC object

Model predictive controller, specified as one of the following:

 getCodeGenerationData

2-43

• mpc object — Implicit MPC controller
• explicitMPC object — Explicit MPC controller created using generateExplicitMPC.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'DataType','single' specifies that the generated code uses single-precision floating
point values.

InitialState — Initial controller state
mpcstate object

Initial controller state when using mpcmoveCodeGeneration, specified as the comma-separated pair
consisting of 'InitialState' and an mpcstate object. This state is used in place of the default
state information from mpcobj.

DataType — Data type used in generated code
'double' (default) | 'single'

Data type used in generated code when using mpcmoveCodeGeneration, specified as specified as
the comma-separated pair consisting of 'DataType' and one of the following:

• 'double' — Use double-precision floating point values.
• 'single' — Use single-precision floating point values.

OnlyComputeCost — Toggle for computing only optimal cost
false (default) | true

Toggle for computing only optimal cost during simulation when using mpcmoveCodeGeneration,
specified as specified as the comma-separated pair consisting of 'OnlyComputeCost' and either
true or false. To reduce computational load by not calculating optimal sequence data, set
OnlyComputeCost to true.

IsAdaptive — Adaptive MPC indicator
false (default) | true

Adaptive MPC indicator when using mpcmoveCodeGeneration, specified as specified as the comma-
separated pair consisting of 'IsAdaptive' and either true or false. Set IsAdaptive to true if
your controller is running in adaptive mode.

For more information on adaptive MPC, see “Adaptive MPC”.

Note IsAdaptive and IsLTV cannot be true at the same time.

IsLTV — Time-varying MPC indicator
false (default) | true

2 Functions

2-44

Time-varying MPC indicator when using mpcmoveCodeGeneration, specified as the comma-
separated pair consisting of 'IsLTV' and either true or false. Set IsLTV to true if your controller
is running in time-varying mode.

For more information on time-varying MPC, see “Time-Varying MPC”.

Note IsAdaptive and IsLTV cannot be true at the same time.

UseVariableHorizon — Variable horizon indicator
false (default) | true

Variable horizon indicator when using mpcmoveCodeGeneration, specified as the comma-separated
pair consisting of 'UseVariableHorizon' and either true or false. To vary your prediction and
control horizons at run time, set UseVariableHorizons to true.

When you use variable horizons, mpcmoveCodeGeneration ignores the horizons specified in
configData and instead uses the prediction and control horizon specified in
onlineData.horizons.

For more information, see “Adjust Horizons at Run Time”.

Output Arguments
configData — MPC configuration parameters
structure

MPC configuration parameters that are constant at run time, returned as a structure. These
parameters are derived from the controller settings in mpcobj. When simulating your controller, pass
configData to mpcmoveCodeGeneration without changing any parameters.

For more information on how generated MPC code uses constant matrices in configData to solve
the QP problem, see “QP Problem Construction for Generated C Code”.

stateData — Initial controller states
structure

Initial controller states, returned as a structure. To initialize your simulation with the initial states
defined in mpcobj, pass stateData to mpcmoveCodeGeneration. To use different initial conditions,
modify stateData. You can specify nondefault controller states using InitialState.

For more information on the stateData fields, see mpcmoveCodeGeneration.

stateData has the following fields.

Field Description
Plant Plant model state estimates
Disturbance Unmeasured disturbance model state estimates
Noise Output measurement noise model state estimates
LastMove Manipulated variable control moves from previous control interval
Covariance Covariance matrix for controller state estimates

 getCodeGenerationData

2-45

Field Description
iA Active inequality constraints

onlineData — Online MPC controller data
structure

Online MPC controller data that you must update at each control interval, returned as a structure
with the following fields.

Field Description
signals Input and output signals, returned as a structure with the following fields.

Field Description
ym Measured outputs
ref Output references
md Measured disturbances
mvTarget Targets for manipulated variables
externalMV Manipulated variables externally applied to the

plant

limits Input and output constraints, returned as a structure with the following
fields:

Field Description
ymin Lower bounds on output signals
ymax Upper bounds on output signals
umin Lower bounds on input signals
umax Upper bounds on input signals

When mpcobj is an explicit MPC controller, mpcmoveCodeGeneration
ignores the limits field.

weights Updated QP optimization weights, returned as a structure with the
following fields:

Field Description
ywt Output weights
uwt Manipulated variable weights
duwt Manipulated variable rate weights
ecr Weight on slack variable used for constraint

softening

When mpcobj is an explicit MPC controller, mpcmoveCodeGeneration
ignores the weights field.

2 Functions

2-46

Field Description
customconstraints Updated custom mixed input/output constraints, returned as a structure

with the following fields:

Field Description
E Manipulated variable constraint constant
F Controlled output constraint constant
G Mixed input/output constraint constant
S Measured disturbance constraint constant

When mpcobj is an explicit MPC controller, mpcmoveCodeGeneration
ignores the customconstraints field.

horizons Updated controller horizon values, returned as a structure with the
following fields:

Field Description
p Prediction horizon
m Control horizon

The horizons field is returned only when the UseVariableHorizon
name-value pair is true.

When mpcobj is an explicit MPC controller, mpcmoveCodeGeneration
ignores the horizons field.

model Updated plant and nominal values for adaptive MPC and time-varying MPC,
returned as a structure with the following fields:

Field Description
A, B, C, D State-space matrices of discrete-time state-space

model.
X Nominal plant states
U Nominal plant inputs
Y Nominal plant outputs
DX Nominal plant state derivatives

The model field is returned only when either the IsAdaptive or IsLTV
name-value pair is true.

getCodeGenerationData returns onlineData with empty matrices for all structure fields, except
signals.ref, signals.ym, and signals.md. These fields contain the corresponding nominal
signal values from mpcobj. If your controller does not have measured disturbances, signals.md is
returned as an empty matrix.

For more information on configuring onlineData fields, see mpcmoveCodeGeneration.

See Also
mpcmoveCodeGeneration | nlmpcmove

 getCodeGenerationData

2-47

Topics
“Generate Code to Compute Optimal MPC Moves in MATLAB”
“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2016a

2 Functions

2-48

getCodeGenerationData
Create data structures for nlmpcmoveCodeGeneration

Syntax
[coreData,onlineData] = getCodeGenerationData(nlobj,x,lastMV)
[coreData,onlineData] = getCodeGenerationData(nlobj,x,lastMV,params)
[___] = getCodeGenerationData(___ ,field)
[___] = getCodeGenerationData(___ ,field1,...,fieldn)

Description
Use this function to create data structures for the nlmpcmoveCodeGeneration function, which
computes optimal control moves for nonlinear MPC controllers.

For information on generating data structures for mpcmoveCodeGeneration, see
getCodeGenerationData.

[coreData,onlineData] = getCodeGenerationData(nlobj,x,lastMV) creates data
structures for use with nlmpcmoveCodeGeneration.

[coreData,onlineData] = getCodeGenerationData(nlobj,x,lastMV,params) copies
initial parameter values in the onlineData structure if nlobj is an nlmpc object. If nlobj is an
nlmpcMultistage object then passing the params argument is not allowed and you have to
manually specify the initial guesses in the InitialGuess field of onlineData instead.

[___] = getCodeGenerationData(___ ,field) enables the specified online weight or
constraint field by adding it to the onlineData structure.

[___] = getCodeGenerationData(___ ,field1,...,fieldn) enables multiple online weight
or constraint fields by adding them to the onlineData structure.

Examples

Create Nonlinear MPC Code Generation Structures

Create a nonlinear MPC controller with four states, two outputs, and one input.

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

 getCodeGenerationData

2-49

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous-time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter Ts to represent the sample time. Specify the
number of parameters and create a parameter vector.

nlobj.Model.NumberOfParameters = 1;
params = {Ts};

Specify the output function of the model, passing the sample time parameter as an input argument.

nlobj.Model.OutputFcn = "pendulumOutputFcn";

Define standard constraints for the controller.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;
nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

Validate the prediction model functions.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj,x0,u0,[],params);

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Only two of the plant states are measurable. Therefore, create an extended Kalman filter for
estimating the four plant states. Its state transition function is defined in pendulumStateFcn.m and
its measurement function is defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn,@pendulumMeasurementFcn);

Define initial conditions for the simulation, initialize the extended Kalman filter state, and specify a
zero initial manipulated variable value.

x0 = [0;0;-pi;0];
y0 = [x0(1);x0(3)];
EKF.State = x0;
mv0 = 0;

Create code generation data structures for the controller, specifying the initial conditions and
parameters.

[coreData,onlineData] = getCodeGenerationData(nlobj,x0,mv0,params);

View the online data structure.

onlineData

2 Functions

2-50

onlineData = struct with fields:
 ref: [0 0]
 MVTarget: 0
 Parameters: {[0.1000]}
 X0: [10x4 double]
 MV0: [10x1 double]
 Slack0: 0

If your application uses online weights or constraints, you must add corresponding fields to the code
generation data structures. For example, the following syntax creates data structures that include
fields for output variable tuning weights, manipulated variable tuning weights, and manipulated
variable bounds.

[coreData2,onlineData2] = getCodeGenerationData(nlobj,x0,mv0,params,...
 'OutputWeights','MVWeights','MVMin','MVMax');

View the online data structure. At run time, specify the online weights and constraints in the added
structure fields.

onlineData2

onlineData2 = struct with fields:
 ref: [0 0]
 MVTarget: 0
 Parameters: {[0.1000]}
 X0: [10x4 double]
 MV0: [10x1 double]
 Slack0: 0
 OutputWeights: [3 3]
 MVWeights: 0
 MVMin: [10x1 double]
 MVMax: [10x1 double]

Input Arguments
nlobj — Nonlinear model predictive controller
nlmpc object | nlmpcMultistage object

Nonlinear model predictive controller, specified as an nlmpc or nlmpcMultistage object.

x — Initial states of nonlinear prediction model
column vector of length Nx

Initial states of the nonlinear prediction model, specified as a column vector of length Nx, where Nx is
the number of prediction model states.

lastMV — Initial manipulated variable control signals
column vector of length Nmv

Initial manipulated variable control signals, specified as a column vector of length Nmv, where Nmv is
the number of manipulated variables.

params — Initial parameter values for non multistage MPC
cell vector

 getCodeGenerationData

2-51

Initial parameter values for non multistage MPC, specified as a cell vector with length equal to
nlobj.Model.NumberOfParameters, which is the number of optional parameters in the controller
prediction model. If the controller has no optional parameters, specify params as {}.

If nlobj is an nlmpc object then the initial values specified in params are copied into the
onlineData structure. If nlobj is an nlmpcMultistage object then the params argument is not
allowed and you have to manually specify the initial guesses in the InitialGuess field of
onlineData instead.

For more information on optional prediction model parameters, see “Specify Prediction Model for
Nonlinear MPC”.

field — Online weight or constraint field name
string | character vector

Online weight or constraint field name, specified as a string or character vector. When creating data
structures for nlmpcmoveCodeGeneration, you can add any of the following fields to the
onlineData output structure. Add a given field to the online data structure only if you expect the
corresponding weight or constraint to vary at run time.

Online Constraints

• "StateMin" — State lower bounds
• "StateMax" — State upper bounds
• "MVMin" — Manipulated variable lower bounds
• "MVMax" — Manipulated variable upper bounds
• "MVRateMin" — Manipulated variable rate of change lower bound
• "MVRateMax" — Manipulated variable rate of change upper bound

Online constraints and Tuning Weights for non-Multistage MPC

• "OutputWeights" — Output variable weights
• "MVWeights" — Manipulated variable weights
• "MVRateWeights" — Manipulated variable rate weights
• "ECRWeight" — Slack variable weight
• "OutputMin" — Output variable lower bounds
• "OutputMax" — Output variable upper bounds

Disturbances, Parameters, and Initial Guesses for Multistage MPC

• "MeasuredDistrubance" — Measured disturbances
• "StateParameter" — Parameter vector for state function and Jacobians
• "StageParameter" — Parameter vector for stage cost, constraints, and Jacobians
• "TerminalState" — Terminal state constraint
• "InitialGuess" — Initial guesses for decision variables

Output Arguments
coreData — Nonlinear MPC configuration parameters
structure

2 Functions

2-52

Nonlinear MPC configuration parameters that are constant at run time, returned as a structure.
These parameters are derived from the controller settings in nlobj. When simulating your controller,
pass coreData to nlmpcmoveCodeGeneration without changing any parameters.

onlineData — Online nonlinear MPC controller data
structure

Run-time simulation data, returned as a structure. The fields in the structure depend on whether
nlobj is an nlmpc object or an nlmpcMultistage object. During a simulation, you must supply this
structure as an input to nlmpcmoveCodeGeneration at every control interval.
nlmpcmoveCodeGeneration then returns as output the updated structure that you will need to
supply as input in the following control interval.

Non-Multistage MPC — Structure for generic MPC controllers
structure

For nlmpc objects, the structure always contains the following fields.

Field Description
ref Output reference values, returned as a column vector of zeros with length

Ny, where Ny is the number of prediction model outputs.
mvTarget Manipulated variable reference values, returned as a column vector of zeros

with length Nmv, where Nmv is the number of manipulated variables.
X0 Initial guess for the state trajectory, returned as a column vector equal to x.
MV0 Initial guess for the manipulated variable trajectory, returned as a column

vector equal to lastMV.
Slack0 Initial guess for the slack variable, returned as zero.

For nlmpc objects, onlineData can also contain the following fields, depending on the controller
configuration and argument values.

Field Description
md Measured disturbance values — This field is returned only when the

controller has measured disturbance inputs, that is, when
nlobj.Dimensions.MDIndex is nonzero. md is returned as a column
vector of zeros with length Nmd, where Nmd is the number of measured
disturbances.

Parameters Parameter values — This field is returned only when the controller uses
optional model parameters. Parameters is returned as a cell vector equal
to params.

 getCodeGenerationData

2-53

Field Description
• OutputWeights
• MVWeights
• MVRateWeights
• ECRWeight
• OutputMin
• OutputMax
• StateMin
• StateMax
• MVMin
• MVMax
• MVRateMin
• MVRateMax

Weight and constraint values — Each field is returned only when the
corresponding field name is specified using the field argument. The value
of each field is equal to the corresponding default value defined in the
controller, as returned in coreData.

For more information on configuring onlineData fields, see nlmpcmoveCodeGeneration.

Multistage MPC — Structure for multistage MPC controllers
structure

For nlmpcMultistage objects, the returned onlineData structure always contains the
InitialGuess field.

Field Description
InitialGuess Initial guess for the decision variables, returned as a column vector of

length equal to the sum of the lengths of all the decision variable vectors for
each stage. For more information, see nlmpcmove.

For nlmpcMultistage objects, onlineData can also contain the following fields, depending on the
controller configuration and argument values.

Field Description
MeasuredDisturbanc
es

Measured disturbance values — This field is returned only when the
controller has measured disturbance inputs, that is, when
nlobj.Dimensions.MDIndex is nonzero. md is returned as a column
vector of zeros with length Nmd, where Nmd is the number of measured
disturbances.

StateFcnParameters Parameter values for state functions and Jacobians — This field is returned
only when the controller state prediction function or its Jacobian use model
parameters, that is when Model.ParameterLength is greater than zero.
StateFcnParameter is returned as a vector.

StageFcnParameters Parameter values for stage cost and constraints functions and their
Jacobians— This field is returned only when any stage cost or constraint
function, or its Jacobian, uses parameters, that is when there is at least one
stage i for which Stages(i).ParameterLength is greater than zero.
StageFcnParameter is returned as a vector.

2 Functions

2-54

Field Description
• StateMin
• StateMax
• MVMin
• MVMax
• MVRateMin
• MVRateMax

Constraint values — Each field is returned only when the corresponding
field name is specified using the field argument. The value of each field is
equal to the corresponding default value defined in the controller, as
returned in coreData.

TerminalState Terminal state, returned as a column vector with as many elements as the
number of states. The terminal state is the desired state at the last
prediction step. To specify desired terminal states at run-time via this field,
you must specify finite values in the TerminalState field of the Model
property of nlobj. Specify inf for the states that do not need to be
constrained to a terminal value. At run time, nlmpcmoveCodeGeneration
ignores any values in the TerminalState field of simdata that correspond
to inf values in nlobj. If you do not specify any terminal value condition in
nlobj, this field is not created in onlinedata.

For more information on configuring onlineData fields, see nlmpcmoveand
nlmpcmoveCodeGeneration.

See Also
validateFcns | nlmpcmove | getSimulationData | nlmpcmoveCodeGeneration

Topics
“Generate Code to Compute Optimal MPC Moves in MATLAB”
“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2020a

 getCodeGenerationData

2-55

getconstraint
Obtain mixed input/output constraints from model predictive controller

Syntax
[E,F,G,V,S] = getconstraint(MPCobj)

Description
[E,F,G,V,S] = getconstraint(MPCobj) returns the mixed-input/output constraints previously
defined for the MPC controller, MPCobj. For more information, see “Mixed Input/Output Constraints”
on page 2-58.

Examples

Retrieve Custom Constraints from MPC Controller

Create a third-order plant model with two manipulated variables, one measured disturbance, and two
measured outputs.

plant = rss(3,2,3);
plant.D = 0;
plant = setmpcsignals(plant,'mv',[1 2],'md',3);

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Assume that you have two soft constraints.

u1 + u2 ≤ 5
y2 + v ≤ 10

Set the constraints for the MPC controller.

E = [1 1; 0 0];
F = [0 0; 0 1];
G = [5;10];
V = [1;1];
S = [0;1];
setconstraint(MPCobj,E,F,G,V,S)

Retrieve the constraints from the controller.

[E,F,G,V,S] = getconstraint(MPCobj)

2 Functions

2-56

E = 2×2

 1 1
 0 0

F = 2×2

 0 0
 0 1

G = 2×1

 5
 10

V = 2×1

 1
 1

S = 2×1

 0
 1

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments
E — Manipulated variable constraint constant
Nc-by-Nmv array | []

Manipulated variable constraint constant, returned as an Nc-by-Nmv array, where Nc is the number of
constraints, and Nmv is the number of manipulated variables.

If MPCobj has no mixed input/output constraints, then E is [].

F — Controlled output constraint constant
Nc-by-Ny array | []

Controlled output constraint constant, returned as an Nc-by-Ny array, where Ny is the number of
controlled outputs (measured and unmeasured).

If MPCobj has no mixed input/output constraints, then F is [].

 getconstraint

2-57

G — Mixed input/output constraint constant
column vector of length Nc | []

Mixed input/output constraint constant, returned as a column vector of length Nc., where Nc is the
number of constraints.

If MPCobj has no mixed input/output constraints, then G is [].

V — Constraint softening constant
column vector of length Nc | []

Constraint softening constant representing the equal concern for the relaxation (ECR), returned as a
column vector of length Nc, where Nc is the number of constraints. If MPCobj has no mixed input/
output constraints, then V is [].

If V is not specified, a default value of 1 is applied to all constraint inequalities and all constraints are
soft. This behavior is the same as the default behavior for output bounds, as described in “Standard
Cost Function”.

To make the ith constraint hard, specify V(i) = 0.

To make the ith constraint soft, specify V(i) > 0 in keeping with the constraint violation magnitude you
can tolerate. The magnitude violation depends on the numerical scale of the variables involved in the
constraint.

In general, as V(i) decreases, the controller hardens the constraints by decreasing the constraint
violation that is allowed.

S — Measured disturbance constraint constant
Nc-by-Nv array | []

Measured disturbance constraint constant, returned as an Nc-by-Nv array, where Nv is the number of
measured disturbances.

If there are no measured disturbances in the mixed input/output constraints, or MPCobj has no mixed
input/output constraints, then S is [].

Algorithms
Mixed Input/Output Constraints

The general form of the mixed input/output constraints is:
Eu(k + j) + Fy(k + j) + Sv(k + j) ≤ G + εV

Here, j = 0,...,p, and:

• p is the prediction horizon.
• k is the current time index.
• u is a column vector manipulated variables.
• y is a column vector of all plant output variables.
• v is a column vector of measured disturbance variables.
• ε is a scalar slack variable used for constraint softening (as in “Standard Cost Function”).

2 Functions

2-58

• E, F, G, V, and S are constant matrices.

Since the MPC controller does not optimize u(k+p), getconstraint calculates the last constraint at
time k+p assuming that u(k+p) = u(k+p-1).

See Also
setconstraint

Topics
“Constraints on Linear Combinations of Inputs and Outputs”

Introduced in R2011a

 getconstraint

2-59

getEstimator
Obtain Kalman gains and model for estimator design

Syntax
[L,M] = getEstimator(MPCobj)
[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj)
[L,M,model,index] = getEstimator(MPCobj,'sys')

Description
[L,M] = getEstimator(MPCobj) extracts the Kalman gains used by the state estimator in a
model predictive controller. The estimator updates the states of internal plant, disturbance, and noise
models at the beginning of each controller interval.

[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj) also returns the system matrices used to
calculate the estimator gains.

[L,M,model,index] = getEstimator(MPCobj,'sys') returns an LTI state-space
representation of the system used for state-estimator design and a structure summarizing the I/O
signal types of the system.

Examples

Extract Parameters for State Estimation

The plant is a stable, discrete LTI state-space model with four states, three inputs, and three outputs.
The manipulated variables are inputs 1 and 2. Input 3 is an unmeasured disturbance. Outputs 1 and 3
are measured. Output 2 is unmeasured.

Create a model of the plant and specify the signals for MPC.

rng(1253) % For repeatable results
Plant = drss(4,3,3);
Plant.Ts = 0.25;
Plant = setmpcsignals(Plant,'MV',[1,2],'UD',3,'MO',[1 3],'UO', 2);
Plant.d(:,[1,2]) = 0;

The last command forces the plant to satisfy the assumption of no direct feedthrough.

Calculate the default model predictive controller for this plant.

MPCobj = mpc(Plant);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 y3 and zero weight for output(s) y2

2 Functions

2-60

Obtain the parameters to be used in state estimation.

[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj);

-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #3 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Based on the estimator state equation, the estimator poles are given by the eigenvalues of A - L*Cm.
Calculate and display the poles.

Poles = eig(A - L*Cm)

Poles = 6×1

 -0.7467
 -0.5019
 0.0769
 0.4850
 0.8825
 0.8291

Confirm that the default estimator is asymptotically stable.

max(abs(Poles))

ans = 0.8825

This value is less than 1, so the estimator is asymptotically stable.

Verify that in this case, L = A*M.

L - A*M

ans = 6×2
10-15 ×

 -0.1110 -0.2498
 0.0139 0
 0.0416 -0.0833
 -0.0416 -0.0416
 -0.0416 0.0833
 -0.2498 0.0278

Input Arguments
MPCobj — MPC controller
MPC controller object

MPC controller, specified as an MPC controller object. Use the mpc command to create the MPC
controller.

 getEstimator

2-61

Output Arguments
L — Kalman gain matrix for time update
matrix

Kalman gain matrix for the time update, returned as a matrix. The dimensions of L are nx-by-nym,
where nx is the total number of controller states, and nym is the number of measured outputs.

M — Kalman gain matrix for measurement update
matrix

Kalman gain matrix for the measurement update, returned as a matrix. The dimensions of L are nx-by-
nym, where nx is the total number of controller states, and nym is the number of measured outputs.

A,Cm,Bu,Bv,Dvm — System matrices
matrices

System matrices used to calculate the estimator gains, returned as matrices of various dimensions.
For definitions of these system matrices, see “State Estimator Equations” on page 2-63.

model — System used for state-estimator design
state-space model

System used for state-estimator design, returned as a state-space (ss) model. The input to model is a
vector signal comprising the following components, concatenated in the following order:

• Manipulated variables
• Measured disturbance variables
• 1
• Noise inputs to disturbance models
• Noise inputs to measurement noise model

The number of noise inputs depends on the disturbance and measurement noise models within
MPCobj. For the category noise inputs to disturbance models, inputs to the input disturbance model
(if any) precede those entering the output disturbance model (if any). The constant input, 1, accounts
for nonequilibrium nominal values (see “MPC Prediction Models”).

To make the calculation of gains L and M more robust, additive white noise inputs are assumed to
affect the manipulated variables and measured disturbances (see “Controller State Estimation”).
These white noise inputs are not included in model.

index — Locations of variables within model
structure

Locations of variables within the inputs and outputs of model. The structure summarizes these
locations with the following fields and values.

Field Name Value
ManipulatedVariables Indices of manipulated variables within the input

vector of model.
MeasuredDisturbances Indices of measured input disturbances within

the input vector of model.

2 Functions

2-62

Field Name Value
Offset Index of the constant input 1 within the input

vector of model.
WhiteNoise Indices of unmeasured disturbance inputs within

the input vector of model.
MeasuredOutputs Indices of measured outputs within the output

vector of model.
UmeasuredOutputs Indices of unmeasured outputs within the output

vector of model.

Algorithms
State Estimator Equations

In general, the controller states are unmeasured and must be estimated. By default, the controller
uses a steady-state Kalman filter that derives from the state observer. For more information, see
“Controller State Estimation”.

At the beginning of the kth control interval, the controller state is estimated with the following steps:

1 Obtain the following data:

• xc(k|k–1) — Controller state estimate from previous control interval, k–1
• uact(k–1) — Manipulated variable (MV) actually used in the plant from k–1 to k (assumed

constant)
• uopt(k–1) — Optimal MV recommended by MPC and assumed to be used in the plant from k–1

to k
• v(k) — Current measured disturbances
• ym(k) — Current measured plant outputs
• Bu, Bv — Columns of observer parameter B corresponding to u(k) and v(k) inputs
• Cm — Rows of observer parameter C corresponding to measured plant outputs
• Dmv — Rows and columns of observer parameter D corresponding to measured plant outputs

and measured disturbance inputs
• L, M — Constant Kalman gain matrices

Plant input and output signals are scaled to be dimensionless prior to use in calculations.
2 Revise xc(k|k–1) when uact(k–1) and uopt(k–1) are different.

xc
rev k |k− 1 = xc k |k− 1 + Bu uact k− 1 − uopt k− 1

3 Compute the innovation.

e k = ym k − Cmxc
rev k |k− 1 + Dmvv k

4 Update the controller state estimate to account for the latest measurements.

xc k |k = xc
rev k |k− 1 + Me k

 getEstimator

2-63

Then, the software uses the current state estimate xc(k|k) to solve the quadratic program at
interval k. The solution is uopt(k), the MPC-recommended manipulated-variable value to be used
between control intervals k and k+1.

Finally, the software prepares for the next control interval assuming that the unknown inputs,
wid(k), wod(k), and wn(k) assume their mean value (zero) between times k and k+1. The software
predicts the impact of the known inputs and the innovation as follows:

xc k + 1 k = Axc
rev k k− 1 + Buuopt k + Bvv k + Le k

See Also
setEstimator | getindist | getoutdist | mpc | mpcstate

Topics
“Controller State Estimation”
“MPC Prediction Models”

Introduced in R2014b

2 Functions

2-64

getindist
Retrieve unmeasured input disturbance model

Syntax
indist = getindist(MPCobj)
[indist,channels] = getindist(MPCobj)

Description
indist = getindist(MPCobj) returns the input disturbance model, indist, used by the model
predictive controller, MPCobj.

[indist,channels] = getindist(MPCobj) also returns the input channels to which integrated
white noise has been added by default. For more information on the default model, see “MPC
Prediction Models”.

Examples

Retrieve Input Disturbance Model

Define a plant model with no direct feedthrough.

plant = rss(3,1,2);
plant.D = 0;

Set the first input signal as a manipulated variable and the second input as an unmeasured
disturbance.

plant = setmpcsignals(plant,'MV',[1],'UD',[2]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the input disturbance model.

indist = getindist(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

 getindist

2-65

Retrieve Input Disturbance Model Channels with Default Integrated White Noise

Define a plant model with no direct feedthrough.

plant = rss(3,1,3);
plant.D = 0;

Set the first input signal as a manipulated variable and the other two inputs as unmeasured
disturbances.

plant = setmpcsignals(plant,'MV',[1],'UD',[2 3]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the default output disturbance model.

[indist,channels] = getindist(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming unmeasured input disturbance #3 is white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Check which input disturbance channels have integrated white noise added by default.

channels

channels = 1

An integrator has been added only to the first unmeasured input disturbance. The other input
disturbance uses a static unity gain to preserve state observability.

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments
indist — Input disturbance model
discrete-time, delay-free, state-space model

2 Functions

2-66

Input disturbance model used by the model predictive controller, MPCobj, returned as a discrete-
time, delay-free, state-space model.

The input disturbance model has:

• Unit-variance white noise input signals. By default, the number of inputs depends upon the
number of unmeasured input disturbances and the need to maintain controller state observability.
For custom input disturbance models, the number of inputs is your choice.

• nd outputs, where nd is the number of unmeasured disturbance inputs defined in
MPCobj.Model.Plant. Each disturbance model output is sent to the corresponding plant
unmeasured disturbance input.

If MPCobj does not have any unmeasured disturbance, indist is returned as an empty state-space
model.

This model, in combination with the output disturbance model (if any), governs how well the
controller compensates for unmeasured disturbances and modeling errors. For more information on
the disturbance modeling in MPC and about the model used during state estimation, see “MPC
Prediction Models” and “Controller State Estimation”.

channels — Input channels with integrated white noise
vector of input indices

Input channels with integrated white noise added by default, returned as a vector of input indices. If
you set indist to a custom input disturbance model using setindist, channels is empty.

Tips
• To specify a custom input disturbance model, use the setindist command.

See Also
mpc | setindist | getoutdist | setEstimator | getEstimator

Topics
“MPC Prediction Models”
“Controller State Estimation”

Introduced in R2006a

 getindist

2-67

getname
Retrieve I/O signal names from MPC plant model

Syntax
name = getname(MPCobj,'input',i)
name = getname(MPCobj,'output',i)

Description
name = getname(MPCobj,'input',i) returns the name of the ith input signal of the plant model
in MPCobj. This is equivalent to name = MPCobj.Model.Plant.InputName{i}.

name = getname(MPCobj,'output',i) returns the name of the ith output signal in variable
name. This is equivalent to name=MPCobj.Model.Plant.OutputName{i}.

Examples

Get names of input and output signals from MPC object

Create a plant and an MPC object, and then retrieve the names of some input and output signals.

mpcverbosity off; % turn off mpc messages

% create plant model
plant = rss(4,4,4); % random state space
plant.D = 0; % set D matrix to zero

% set signals type in plant model
plant = setmpcsignals(plant,'MV',1,'MD',3,'UD',4,'MO',1,'UO',[3 4]);

% create MPC object
mpcobj=mpc(plant,1); % sampling time = 1 second

Get names of input signals

% get input signal names
getname(mpcobj,'input',1) % get name of first input signal
ans =
 'MV1'

getname(mpcobj,'input',2) % get name of second input signal
ans =
 'MV2'

getname(mpcobj,'input',3) % get name of third input signal
ans =
 'MD1'

getname(mpcobj,'input',4) % get name of fourth input signal

2 Functions

2-68

ans =
 'UD1'

Get names of output signals

% get output signal names
getname(mpcobj,'output',1) % get name of first output signal
ans =
 'MO1'

getname(mpcobj,'output',2) % get name of second output signal
ans =
 'MO2'

getname(mpcobj,'output',3) % get name of third output signal
ans =
 'UO1'

getname(mpcobj,'output',4) % get name of fourth output signal
ans =
 'UO2'

% alternative ways to retrieve names
mpcobj.Model.Plant.InputName{2} % second plant input
ans =
 'MV2'

mpcobj.ManipulatedVariables(2).Name % second manipulated variable
ans =
 'MV2'

mpcobj.Model.Plant.InputName{4} % fourth plant input
ans =
 'UD1'

mpcobj.DisturbanceVariables(2).Name % second disturbance variable
ans =
 'UD1'

mpcobj.Model.Plant.OutputName{4} % fourth plant output
ans =
 'UO2'

mpcobj.OutputVariables(4).Name % fourth plant variable name
ans =
 'UO2'

Note that signals not specified with setmpcsignals are assumed to be measured inputs (for non-
specified inputs) or measured outputs (for non-specified outputs).

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

 getname

2-69

i — Signal number selection
'integer' greater than zero

This integer specify that the name of the ith signal needs to be retrieved.

Signal number to be retrieved.
Example: 2

Output Arguments
name — Signal name
character array

This character array is the name of the ith input or output signal (and it does not affect whether the
signal is categorized as a manipulated variable, measured or unmeasured disturbance, measured or
unmeasured output).

For input signals, this is the content of MPCobj.Model.Plant.InputName{i}, while for output
signals, this is the content of MPCobj.Model.Plant.OutputName{i}.

If the specified signal is a manipulated variable, this field is typically 'MV1', 'MV2', and so on, up to
the number of manipulated variables, unless specifically set otherwise. This is also identical to the
content of the Name field of the corresponding structure in MPCobj.ManipulatedVariables.

If the specified signal is a disturbance input, this field is typically 'MD1', 'MD2', and so on, up to the
number of measured disturbance variables, or 'UD1', 'UD2', and so on, up to the number of
unmeasured disturbance variables, unless specifically set otherwise. This is also the content of the
corresponding Name field of MPCobj.DisturbanceVariables.

If the specified signal is a output signal, this field is typically 'MO1', 'MO2', and so on, up to the
number of measured output variables, or 'UO1', 'UO2', and so on, up to the number of unmeasured
output variables, unless specifically set otherwise. This is also the content of the corresponding Name
field of MPCobj.OutputVariables.

See Also
setname | mpc | setmpcsignals | set

Introduced before R2006a

2 Functions

2-70

getoutdist
Retrieve unmeasured output disturbance model

Syntax
outdist = getoutdist(MPCobj)
[outdist,channels] = getoutdist(MPCobj)

Description
outdist = getoutdist(MPCobj) returns the output disturbance model, outdist, used by the
model predictive controller, MPCobj.

[outdist,channels] = getoutdist(MPCobj) also returns the output channels to which
integrated white noise has been added by default. For more information on the default model, see
“MPC Prediction Models”.

Examples

Retrieve Output Disturbance Model

Define a plant model with no direct feedthrough, and create an MPC controller for that plant.

plant = rss(3,2,2);
plant.D = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the output disturbance model.

outdist = getoutdist(MPCobj);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Retrieve Output Disturbance Model Channels with Default Integrated White Noise

Define a plant model with no direct feedthrough, and create an MPC controller for that plant.

plant = rss(3,3,3);
plant.d = 0;
MPCobj = mpc(plant,0.1);

 getoutdist

2-71

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the default output disturbance model.

[outdist,channels] = getoutdist(MPCobj);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #3 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Check which channels have default integrated white noise disturbances.

channels

channels = 1×3

 1 2 3

Integrators have been added to all three output channels.

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments
outdist — Output disturbance model
discrete-time, delay-free, state-space model

Output disturbance model used by the model predictive controller, MPCobj, returned as a discrete-
time, delay-free, state-space model.

The output disturbance model has:

• ny outputs, where ny is the number of plant outputs defined in MPCobj.Model.Plant. Each
disturbance model output is added to the corresponding plant output. By default, disturbance
models corresponding to unmeasured output channels are zero.

• Unit-variance white noise input signals. By default, the number of inputs is equal to the number of
default integrators added.

This model, in combination with the input disturbance model (if any), governs how well the controller
compensates for unmeasured disturbances and modeling errors. For more information on the
disturbance modeling in MPC and about the model used during state estimation, see “MPC Prediction
Models” and “Controller State Estimation”.

2 Functions

2-72

channels — Output channels with integrated white noise
vector of output indices

Output channels with integrated white noise added by default, returned as a vector of output indices.
If you set outdist to a custom output disturbance model using setoutdist, channels is empty.

Tips
• To specify a custom output disturbance model, use the setoutdist command.

See Also
mpc | setoutdist | getindist | setEstimator | getEstimator

Topics
“MPC Prediction Models”
“Controller State Estimation”

Introduced before R2006a

 getoutdist

2-73

getSimulationData
Create data structure to simulate multistage MPC controller with nlmpcmove

Syntax
simdata = getSimulationData(nlmpcMSobj)

Description
Use this function to create a default data structure to simulate a multistage MPC controller with the
nlmpcmove function.

For information on generating data structures for mpcmoveCodeGeneration, see
getCodeGenerationData.

simdata = getSimulationData(nlmpcMSobj) creates an initial simulation data structure for use
with nlmpcmove.

Examples

Simulate Multistage Nonlinear MPC Controller Using Initial Guesses

This example shows how to create and simulate a simple multistage MPC controller in closed loop
using initial guesses, with the MATLAB® function nlmpcmove.

Create Multistage MPC Controller

Create a multistage MPC object with a seven-steps horizon, one state, and one manipulated variable.

nlmsobj = nlmpcMultistage(7,1,1);

Specify the state transition function for the prediction model (mystatefcn is defined at the end of
this example).

nlmsobj.Model.StateFcn = @mystatefcn;

As a best practice, use Jacobians whenever they are available, otherwise the solver must compute it
numerically.

Specify the Jacobian of the state transition function (mystatejacobian is defined at the end of the
file).

nlmsobj.Model.StateJacFcn = @mystatejac;

Specify the cost functions for all stages except the first (mycostfcn is defined at the end of the file).

for i=2:8
 nlmsobj.Stages(i).CostFcn = @mycostfcn;
end

2 Functions

2-74

Define Initial Conditions, Create Data Structure, and Validate Functions

Initialize the plant state and input.

x=3;
mv=0;

Create the initial simulation data structure.

simdata = getSimulationData(nlmsobj)

simdata = struct with fields:
 InitialGuess: []

Validate functions and the data structure.

validateFcns(nlmsobj,x,mv,simdata);

Model.StateFcn is OK.
Model.StateJacFcn is OK.
"CostFcn" of the following stages [2 3 4 5 6 7 8] are OK.
Analysis of user-provided model, cost, and constraint functions complete.

Simulate Controller in Closed Loop

Simulate the control loop for 5 steps.

for k=1:5
 [mv,simdata] = nlmpcmove(nlmsobj, x, mv, simdata); % calculate move and update simdata
 [~,xhist] = ode45(@(t,xode) mystatefcn(xode,mv),[0 nlmsobj.Ts],x); % simulate plant for one sample time
 x = xhist(end); % update plant state
end

Since updated initial guesses are supplied as an input argument within the simdata structure,
nlmpcmove does not need to recalculate them at each time step, which saves computation time and
improves performance. Updating initial guesses at every time step is a best practice.

Display the last values of the state and manipulated variables.

disp(['Final value of x =' num2str(x)])

Final value of x =-0.039545

disp(['Final value of mv =' num2str(mv)])

Final value of mv =-0.066672

Support Functions

State transition function.

function xdot = mystatefcn(x,u)
 xdot = u-sin(x);
end

Jacobian of the state transition function.

function [A,B] = mystatejac(x,~)
 A = -cos(x);

 getSimulationData

2-75

 B = 1;
end

Stage cost functions.

function j = mycostfcn(s,x,u)
 j = abs(u)/s+s*x^2;
end

Input Arguments
nlmpcMSobj — Nonlinear Multistage MPC controller
nlmpcMultistage object

Multistage nonlinear MPC controller, specified as an nlmpcMultistage object.

Output Arguments
simdata — Run-time simulation data structure
structure

Run-time simulation data, specified as a structure with the following fields.

MeasuredDisturbance — Measured disturbance values
[] (default) | row vector | array

Measured disturbance values, specified as a row vector of length Nmd or an array with Nmd columns,
where Nmd is the number of measured disturbances. If your multistage MPC object has any measured
disturbance channel defined, you must specify MeasuredDisturbance. If your controller has no
measured disturbances, you can omit this field in the structure or specify it as [].

To use the same disturbance values across the prediction horizon, specify a row vector.

To vary the disturbance values over the prediction horizon from time k to time k+p, specify an array
with up to p+1 rows. Here, k is the current time and p is the prediction horizon. Each row contains
the disturbance values for one prediction horizon step. If you specify fewer than p rows, nlmpcmove
uses the values in the final row for the remaining steps of the prediction horizon.

If you define measured disturbances in the input object, you must provide them via simdata at run-
time.

MVMin — Manipulated variable lower bounds
[] (default) | row vector | matrix

Manipulated variable lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMin(:,i) replaces the
ManipulatedVariables(i).Min property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p–1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

2 Functions

2-76

If simdata does not contain a MVMin field, then the manipulated variable lower bound (if present in
the input object) does not change at run time.

MVMax — Manipulated variable upper bounds
[] (default) | row vector | matrix

Manipulated variable upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMax(:,i) replaces the
ManipulatedVariables(i).Max property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a MVMax field, then the manipulated variable upper bound (if present in
the input object) does not change at run time.

MVRateMin — Manipulated variable rate lower bounds
[] (default) | row vector | matrix

Manipulated variable rate lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMin(:,i) replaces the
ManipulatedVariables(i).RateMin property of the controller at run time. MVRateMin bounds
must be nonpositive.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a MVRateMin field, then the manipulated variable rate lower bound (if
present in the input object) does not change at run time.

MVRateMax — Manipulated variable rate upper bounds
[] (default) | row vector | matrix

Manipulated variable rate upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMax(:,i) replaces the
ManipulatedVariables(i).RateMax property of the controller at run time. MVRateMax bounds
must be nonnegative.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a MVRateMax field, then the manipulated variable rate upper bound (if
present in the input object) does not change at run time.

 getSimulationData

2-77

StateMin — State lower bounds
[] (default) | row vector | matrix

State lower bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMin(:,i) replaces the States(i).Min property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a StateMin field, then the state lower bound (if present in the input
object) does not change at run time.

StateMax — State upper bounds
[] (default) | row vector | matrix

State upper bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMax(:,i) replaces the States(i).Max property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a StateMax field, then the state upper bound (if present in the input
object) does not change at run time.

StateFcnParameters — State function parameter values
[] (default) | vector

State function parameter values, specified as a vector with length equal to the value of the
Model.ParameterLength property of the multistage controller object. If Model.StateFcn needs a
parameter vector, you must provide its value at runtime using this field, otherwise you can omit this
field or set it to [].

StageFcnParameters — Stage function parameter values
[] (default) | vector

Stage functions parameter values, specified as a vector with length equal to the sum of all the values
in the Stages(i).ParameterLength properties of the multistage controller object. If any cost or
constraint function defined in the Stages property needs a parameter vector, you must provide all
the parameter vectors at runtime (stacked in a single column) using this field, otherwise you can omit
this field or set it to [].

You must stack the parameter vectors for all stages in the column vector StageFcnParameters as
follows.

[parameter vector for stage 1;
 parameter vector for stage 2;

2 Functions

2-78

 ...
 parameter vector for stage p+1;
]

TerminalState — Terminal state
[] (default) | vector

Terminal state, specified as a column vector with as many elements as the number of states. The
terminal state is the desired state at the last prediction step. To specify desired terminal states at run-
time via this field, you must specify finite values in the TerminalState field of the Model property
of nlmpcMSobj. Specify inf for the states that you do not need to constrain to a terminal value. At
run time, nlmpcmove ignores any values in the TerminalState field of simdata that correspond to
inf values in nlmpcMSobj. If you do not specify any terminal value condition in nlmpcMSobj, this
field is not created in simdata.

If simdata does not contain a TerminalState field, then the terminal state constraint (if present in
the input object) does not change at run time.

InitialGuess — Initial guesses for the decision variables
[] (default) | vector

Initial guesses for the decision variables, specified as a row vector of length equal to the sum of the
lengths of all the decision variable vectors for each stages.

You must be stack the initial guesses for all stages in the column vector InitialGuess as follows.

[state vector guess for stage 1;
 manipulated variable vector guess for stage 1;
 manipulated variable vector rate guess for stage 1; % if used
 slack variable vector guess for stage 1; % if used
 state vector guess for stage 2;
 manipulated variable vector guess for stage 2;
 manipulated variable vector rate guess for stage 2; % if used
 slack variable vector guess for stage 2; % if used
 ...
 state vector guess for stage p+1;
 manipulated variable vector guess for stage p+1;
 manipulated variable vector rate guess for stage p+1; % if used
 slack variable vector guess for stage p+1; % if used
]

If InitialGuess is [], then nlmpcmove calculates the initial guesses from its x and lastmv
arguments.

In general, during closed-loop simulation, you do not specify InitialGuess yourself. Instead, when
calling nlmpcmove, return the simdata output argument, which contains the calculated initial
guesses for the next control interval. You can then pass simdata as an input argument to
nlmpcmove for the next control interval. These steps are a best practice, even if you do not specify
any other run-time options.

See Also
nlmpcMultistage | validateFcns | nlmpcmove | getCodeGenerationData |
nlmpcmoveCodeGeneration

Topics
“Nonlinear MPC”

 getSimulationData

2-79

“Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC”

Introduced in R2021a

2 Functions

2-80

gpc2mpc
Generate MPC controller using generalized predictive controller (GPC) settings

Syntax
MPCobj = gpc2mpc(plant)
gpcOptions = gpc2mpc
MPCobj = gpc2mpc(plant,gpcOptions)

Description
MPCobj = gpc2mpc(plant) generates a single-input single-output MPC controller with default
GPC settings and sample time of the specified plant, plant. The GPC is a nonminimal state-space
representation described in “References” on page 2-83. plant is a discrete-time LTI model with
sample time greater than 0.

gpcOptions = gpc2mpc creates a structure gpcOptions containing default values of GPC settings.

MPCobj = gpc2mpc(plant,gpcOptions) generates an MPC controller using the GPC settings in
gpcOptions.

Examples

Design an MPC controller using GPC settings

% Specify the plant described in Example 1.8 of
% “References”.
G = tf(9.8*[1 -0.5 6.3],conv([1 0.6565],[1 -0.2366 0.1493]));

% Discretize the plant with sample time of 0.6 seconds.
Ts = 0.6;
Gd = c2d(G, Ts);

% Create a GPC settings structure.
GPCoptions = gpc2mpc;

% Specify the GPC settings described in example 4.11 of
% “References”.
% Hu
GPCoptions.NU = 2;
% Hp
GPCoptions.N2 = 5;
% R
GPCoptions.Lam = 0;
GPCoptions.T = [1 -0.8];

% Convert GPC to an MPC controller.
mpc = gpc2mpc(Gd, GPCoptions);

% Simulate for 50 steps with unmeasured disturbance between

 gpc2mpc

2-81

% steps 26 and 28, and reference signal of 0.
SimOptions = mpcsimopt(mpc);
SimOptions.UnmeasuredDisturbance = [zeros(25,1); ...
-0.1*ones(3,1); 0];
sim(mpc, 50, 0, SimOptions);

Input Arguments
plant — plant model
single-output discrete-time ss, tf or zpk object

Single-output LTI model with sampling time greater than 0, and only one manipulated variable input.
Example: zpk([],-1,1)

gpcOptions — GPC settings
structure

GPC settings, specified as a structure with the following fields.

N1 Starting interval in prediction horizon, specified as a positive
integer.

Default: 1
N2 Last interval in prediction horizon, specified as a positive integer

greater than N1.Default: 10
NU Control horizon, specified as a positive integer less than the

prediction horizon.

Default: 1
Lam Penalty weight on changes in manipulated variable, specified as a

positive integer greater than or equal to 0.

Default: 0
T Numerator of the GPC disturbance model, specified as a row

vector of polynomial coefficients whose roots lie within the unit
circle.

Default: [1].
MVindex Index of the manipulated variable for multi-input plants, specified

as a positive integer.

Default: 1

Output Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

2 Functions

2-82

Tips
• For plants with multiple inputs, only one input is the manipulated variable, and the remaining

inputs are measured disturbances in feedforward compensation. The plant output is the measured
output of the MPC controller.

• Use the MPC controller with Model Predictive Control Toolbox software for simulation and
analysis of the closed-loop performance.

References
[1] Maciejowski, J. M. Predictive Control with Constraints, Pearson Education Ltd., 2002, pp. 133–

142.

See Also
mpc

Topics
“Design Controller Using MPC Designer”
“Design MPC Controller at the Command Line”

Introduced in R2010a

 gpc2mpc

2-83

mpcActiveSetOptions
Create default option set for mpcActiveSetSolver

Syntax
options = mpcActiveSetOptions
options = mpcActiveSetOptions(type)

Description
options = mpcActiveSetOptions creates a structure of default options for
mpcActiveSetSolver, which solves a quadratic programming (QP) problem using an active-set
algorithm.

options = mpcActiveSetOptions(type) creates a default option set using the specified input
data type. All real options are specified using this data type.

Examples

Create Default Option Set for Active-Set QP Solver

Create a default option set.

opt = mpcActiveSetOptions;

Create and Modify Default Active-Set QP Solver Option Set

Create a default option set.

opt = mpcActiveSetOptions;

Specify the maximum number of iterations allowed during computation.

opt.MaxIterations = 100;

Specify a constraint tolerance for verifying that the optimal solution satisfies the inequality
constraints.

opt.ConstraintTolerance = 1.0e-4;

Create Active-Set Option Set Specifying Input Argument Type

Create a default option set, specifying the input argument type.

opt = mpcActiveSetOptions('single');

2 Functions

2-84

Input Arguments
type — Solver input argument data type
'double' (default) | 'single'

Solver input argument data type, specified as either 'double' or 'single'. This data type is used
for both simulation and code generation. All real options in the option set are specified using this data
type, and all real input arguments to mpcActiveSetSolver must match this type.

Output Arguments
options — Option set for mpcActiveSetSolver
structure

Option set for mpcActiveSetSolver, returned as a structure with the following fields.

Field Description Default
DataType Input argument data type, specified as either 'double' or 'single'.

This data type is used for both simulation and code generation, and all
real input arguments to the solver function must match this type.

'double'

MaxItera
tions

Maximum number of iterations allowed when computing the QP
solution, specified as a positive integer.

200

Constrai
ntTolera
nce

Tolerance used to verify that inequality constraints are satisfied by the
optimal solution, specified as a positive scalar. A larger
ConstraintTolerance value allows for larger constraint violations.

1e-6

UseHessi
anAsInpu
t

Indicator of whether the first input argument to mpcActiveSetSolver
is the Hessian matrix, specified as a logical value. If
UseHessianAsInput is true, pass the Hessian matrix to
mpcActiveSetSolver. Otherwise, use the inverse of the lower-
triangular Cholesky decomposition (Linv) of the Hessian matrix.

If your application requires repetitive calls of mpcActiveSetSolver
using a constant Hessian matrix, you can improve computational
efficiency by passing Linv to mpcActiveSetSolver instead of the
Hessian matrix.

true

Integrit
yChecks

Indicator of whether integrity checks are performed on the solver
function input data, specified as a logical value. If IntegrityChecks is
true, then integrity checks are performed and diagnostic messages are
displayed. Use false for code generation only.

true

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

 mpcActiveSetOptions

2-85

• You can use mpcActiveSetSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcActiveSetOptions. Create the function myCode,
which uses mpcActiveSetSolver and mpcActiveSetOptions.

function [out1,out2] = myCode(in1,in2)
%#codegen
...
options = mpcActiveSetOptions;
[x,status] = mpcActiveSetSolver(Linv,f,A,b,Aeq,Beq,iA0,options);
...

Generate C code with MATLAB Coder™.

func = 'myCode';
cfg = coder.config('mex'); % or 'lib', 'dll'
codegen('-config',cfg,func,'-o',func);

• For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double' or 'single' using mpcActiveSetOptions.

See Also
mpcActiveSetSolver

Introduced in R2020a

2 Functions

2-86

mpcActiveSetSolver
Solve quadratic programming problem using active-set algorithm

Syntax
[x,exitflag] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options)
[x,exitflag,iA,lambda] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options)

Description
Using mpcActiveSetSolver, you can solve a quadratic programming (QP) problem using an active-
set algorithm. This function provides access to the built-in Model Predictive Control Toolbox active-
set QP solver.

Using an active-set solver can provide fast and robust performance for small-scale and medium-scale
optimization problems in both double and single precision.

This solver is useful for:

• Advanced MPC applications that are beyond the scope of Model Predictive Control Toolbox
software.

• Custom QP applications, including applications that require code generation.

Alternatively, you can also access the built-in interior-point QP solver using
mpcInteriorPointSolver.

[x,exitflag] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options) finds an optimal
solution x to a quadratic programming problem by minimizing the objective function:

J = 1
2x⊺Hx + f⊺x

subject to inequality constraints Ax ≤ b and equality constraints Aeqx = beq. exitflag indicates the
validity of x.

[x,exitflag,iA,lambda] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options) also
returns the active inequalities iA at the solution, and the Lagrange multipliers lambda for the
solution.

Examples

Solve Quadratic Programming Problem Using Active-Set Solver

Find the values of x that minimize

f x = 0 . 5x1
2 + x2

2− x1x2− 2x1− 6x2,

subject to the constraints

 mpcActiveSetSolver

2-87

x1 ≥ 0
x2 ≥ 0
x1 + x2 ≤ 2
−x1 + 2x2 ≤ 2
2x1 + x2 ≤ 3 .

Specify the Hessian matrix and linear multiplier vector for the objective function.

H = [1 -1; -1 2];
f = [-2; -6];

Specify the inequality constraint parameters.

A = [-1 0; 0 -1; 1 1; -1 2; 2 1];
b = [0; 0; 2; 2; 3];

Define Aeq and beq to indicate that there are no equality constraints.

n = length(f);
Aeq = zeros(0,n);
beq = zeros(0,1);

Create a default option set for mpcActiveSetSolver.

opt = mpcActiveSetOptions;

To cold start the solver, define all inequality constraints as inactive.

iA0 = false(size(b));

Solve the QP problem.

[x,exitflag] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,opt);

Examine the solution x.

x

x = 2×1

 0.6667
 1.3333

When solving the QP problem, you can also determine which inequality constraints are active for the
solution.

[x,exitflag,iA,lambda] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,opt);

Check the active inequality constraints. An active inequality constraint is at equality for the optimal
solution.

iA

iA = 5x1 logical array

 0

2 Functions

2-88

 0
 1
 1
 0

There is a single active inequality constraint. View the Lagrange multiplier for this constraint.

lambda.ineqlin(1)

ans = 0

Input Arguments
H — Hessian matrix
n-by-n matrix

Hessian matrix, specified as a symmetric n-by-n matrix, where n > 0 is the number of optimization
variables.

The active-set QP algorithm requires that the Hessian matrix be positive definite. To determine
whether H is positive definite, use the chol function.

[~,p] = chol(H);

If p = 0, then H is positive definite. Otherwise, p is a positive integer.

The active-set QP algorithm computes the lower-triangular Cholesky decomposition (Linv) of the
Hessian matrix. If your application requires repetitive calls of mpcActiveSetSolver using a
constant Hessian matrix, you can improve computational efficiency by computing Linv once and
passing it to mpcActiveSetSolver instead of the Hessian matrix. To do so, you must set the
UseHessianAsInput field of options to false.

options = mpcActiveSetOptions;
options.UseHessianAsInput = false;

To compute Linv, use the following code.

[L,p] = chol(H,'lower');
Linv = linsolve(L,eye(size(L)),struct('LT',true));

f — Multiplier of the objective function linear term
column vector of length n

Multiplier of the objective function linear term, specified as a column vector of length n, where n is
the number of optimization variables.

A — Linear inequality constraint coefficients
m-by-n matrix

Linear inequality constraint coefficients, specified as an m-by-n matrix, where n is the number of
optimization variables and m is the number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,n).

 mpcActiveSetSolver

2-89

b — Right-hand side of inequality constraints
column vector of length m

Right-hand side of inequality constraints, specified as a column vector of length m, where m is the
number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,1).

Aeq — Linear equality constraint coefficients
q-by-n matrix

Linear equality constraint coefficients, specified as a q-by-n matrix, where n is the number of
optimization variables and q <= n is the number of equality constraints. Equality constraints must be
linearly independent with rank(Aeq) = q.

If your problem has no equality constraints, use zeros(0,n).

beq — Right-hand side of equality constraints
column vector of length q

Right-hand side of equality constraints, specified as a column vector of length q, where q is the
number of equality constraints.

If your problem has no equality constraints, use zeros(0,1).

iA0 — Initial active inequalities
logical vector of length m

Initial active inequalities, where the equal portion of the inequality is true, specified as a logical
vector of length m, where m is the number of inequality constraints. Specify iA0 as follows:

• If your problem has no inequality constraints, use false(0,1).
• For a cold start, use false(m,1).
• For a warm start, set iA0(i) == true to start the algorithm with the ith inequality constraint

active. Use the optional output argument iA from a previous solution to specify iA0 in this way. If
both iA0(i) and iA0(j) are true, then rows i and j of A should be linearly independent.
Otherwise, the solution can fail with exitflag = -2.

options — Option set for mpcActiveSetSolver
structure

Option set for mpcActiveSetSolver, specified as a structure created using
mpcActiveSetOptions.

Output Arguments
x — Optimal solution to the QP problem
column vector of length n

Optimal solution to the QP problem, returned as a column vector of length n, where n is the number
of optimization variables. mpcActiveSetSolver always returns a value for x. To determine whether
the solution is optimal or feasible, check exitflag.

2 Functions

2-90

exitflag — Solution validity indicator
positive integer | 0 | -1 | -2

Solution validity indicator, returned as an integer according to the following table.

Value Description
> 0 x is optimal. In this case, exitflag represents the number of iterations performed during

optimization.
0 The maximum number of iterations was reached. Solution x might be suboptimal or

infeasible.

To determine if x is infeasible, check whether the solution violates the constraint tolerance
specified in options.

feasible = (A*x-b) <= options.ConstraintTolerance;

If any element of feasible is false, then x is infeasible.
-1 The problem appears to be infeasible, that is, the constraint Ax ≤ b cannot be satisfied.
-2 An unrecoverable numerical error occurred.

iA — Active inequalities
logical vector of length m

Active inequalities, where the equal portion of the inequality is true, returned as a logical vector of
length m. If iA(i) == true, then the ith inequality is active for solution x.

Use iA to warm start a subsequent mpcActiveSetSolver solution.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields.

Field Description
ineqlin Multipliers of the inequality constraints, returned as a vector of length n. When the

solution is optimal, the elements of ineqlin are nonnegative.
eqlin Multipliers of the equality constraints, returned as a vector of length q. There are no sign

restrictions in the optimal solution.

Tips
• The KWIK algorithm requires that the Hessian matrix H be positive definite. When calculating

Linv, use the chol function.

[L,p] = chol(H,'lower');

If p = 0, then H is positive definite. Otherwise, p is a positive integer.
• mpcActiveSetSolver provides access to the default active-set QP solver used by Model

Predictive Control Toolbox software. Use this command to solve QP problems in your own custom
MPC applications. For an example of a custom MPC application using mpcActiveSetSolver, see
“Solve Custom MPC Quadratic Programming Problem and Generate Code”.

 mpcActiveSetSolver

2-91

Algorithms
mpcActiveSetSolver solves the QP problem using an active-set method, the KWIK algorithm,
based on [1]. For more information, see “QP Solvers”.

References
[1] Schmid, C., and L.T. Biegler. "Quadratic Programming Methods for Reduced Hessian SQP."

Computers & Chemical Engineering 18, no. 9 (September 1994): 817–32. https://doi.org/
10.1016/0098-1354(94)E0001-4.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can use mpcActiveSetSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcActiveSetOptions. Create the function myCode,
which uses mpcActiveSetSolver and mpcActiveSetOptions.

function [out1,out2] = myCode(in1,in2)
%#codegen
...
options = mpcActiveSetOptions;
[x,status] = mpcActiveSetSolver(Linv,f,A,b,Aeq,Beq,iA0,options);
...

Generate C code with MATLAB Coder.

func = 'myCode';
cfg = coder.config('mex'); % or 'lib', 'dll'
codegen('-config',cfg,func,'-o',func);

• For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double' or 'single' using mpcActiveSetOptions.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
mpcActiveSetOptions | mpcInteriorPointSolver | quadprog

Topics
“QP Solvers”
“Solve Custom MPC Quadratic Programming Problem and Generate Code”

Introduced in R2020a

2 Functions

2-92

mpcInteriorPointOptions
Create default option set for mpcInteriorPointSolver

Syntax
options = mpcInteriorPointOptions
options = mpcInteriorPointOptions(type)

Description
options = mpcInteriorPointOptions creates a structure of default options for
mpcInteriorPointSolver, which solves a quadratic programming (QP) problem using an interior-
point algorithm.

options = mpcInteriorPointOptions(type) creates a default option set using the specified
input data type. All real options are specified using this data type.

Examples

Create Default Option Set for Interior-Point QP Solver

Create a default option set.

opt = mpcInteriorPointOptions;

Create and Modify Default Interior-Point QP Solver Option Set

Create a default option set.

opt = mpcInteriorPointOptions;

Specify the maximum number of iterations allowed during computation.

opt.MaxIterations = 100;

Specify a constraint tolerance for verifying that the optimal solution satisfies the inequality
constraints.

opt.ConstraintTolerance = 1.0e-4;

Create Interior-Point Option Set Specifying Input Argument Type

Create a default option set, specifying the input argument type.

opt = mpcInteriorPointOptions('single');

 mpcInteriorPointOptions

2-93

Input Arguments
type — Solver input argument data type
'double' (default) | 'single'

Solver input argument data type, specified as either 'double' or 'single'. This data type is used
for both simulation and code generation. All real options in the option set are specified using this data
type, and all real input arguments to mpcInteriorPointSolver must match this type.

Output Arguments
options — Option set for mpcInteriorPointSolver
structure

Option set for mpcInteriorPointSolver, returned as a structure with the following fields.

Field Description Default
DataType Input argument data type, specified as either 'double' or 'single'.

This data type is used for both simulation and code generation, and all
real input arguments to the solver function must match this type.

'double'

MaxItera
tions

Maximum number of iterations allowed when computing the QP
solution, specified as a positive integer.

50

Constrai
ntTolera
nce

Tolerance used to verify that equality and inequality constraints are
satisfied by the optimal solution, specified as a positive scalar. A larger
ConstraintTolerance value allows for larger constraint violations.

1e-6

Optimali
tyTolera
nce

Termination tolerance for first-order optimality (KKT dual residual),
specified as a positive scalar. Increasing this value relaxes the condition
for the optimality check.

1e-6

Compleme
ntarityT
olerance

Termination tolerance for first-order optimality (KKT average
complementarity residual), specified as a positive scalar. Increasing this
value improves robustness, while decreasing this value increases
accuracy.

1e-8

StepTole
rance

Termination tolerance for decision variables, specified as a positive
scalar.

1e-8

Integrit
yChecks

Indicator of whether integrity checks are performed on the solver
function input data, specified as a logical value. If IntegrityChecks is
true, then integrity checks are performed and diagnostic messages are
displayed. Use false for code generation only.

true

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

2 Functions

2-94

• You can use mpcInteriorPointSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcInteriorPointOptions. Create the function
myCode, which uses mpcInteriorPointSolver and mpcInteriorPointOptions.

function [out1,out2] = myCode(in1,in2)
%#codegen
...
options = mpcInteriorPointOptions;
[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,Beq,x0,options);
...

Generate C code with MATLAB Coder.

func = 'myCode';
cfg = coder.config('mex'); % or 'lib', 'dll'
codegen('-config',cfg,func,'-o',func);

• For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double' or 'single' using mpcInteriorPointOptions.

See Also
mpcInteriorPointSolver

Introduced in R2020a

 mpcInteriorPointOptions

2-95

mpcInteriorPointSolver
Solve a quadratic programming problem using an interior-point algorithm

Syntax
[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,options)
[x,exitflag,feasible,lambda] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,
options)

Description
Using mpcInteriorPointSolver, you can solve a quadratic programming (QP) problem using a
primal-dual interior-point algorithm with a Mehrotra predictor-corrector. This function provides
access to the built-in Model Predictive Control Toolbox interior-point QP solver.

Using an interior-point solver can provide superior performance for large-scale optimization
problems, such as MPC applications that enforce constraints over large prediction and control
horizons.

This solver is useful for:

• Advanced MPC applications that are beyond the scope of Model Predictive Control Toolbox
software.

• Custom QP applications, including applications that require code generation.

Alternatively, you can also access the built-in active-set QP solver using mpcActiveSetSolver.

[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,options) finds an optimal
solution x to a quadratic programming problem by minimizing the objective function

J = 1
2x⊺Hx + f⊺x

subject to inequality constraints Ax ≤ b and equality constraints Aeqx = beq. exitflag indicates the
validity of x.

[x,exitflag,feasible,lambda] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,
options) also returns a logical flag feasible that indicates the feasibility of the solution and the
Lagrange multipliers lambda for the solution.

Examples

Solve Quadratic Programming Problem Using Interior-Point Solver

Find the values of x that minimize

f x = 0 . 5x1
2 + x2

2− x1x2− 2x1− 6x2,

subject to the constraints

2 Functions

2-96

x1 ≥ 0
x2 ≥ 0
x1 + x2 ≤ 2
−x1 + 2x2 ≤ 2
2x1 + x2 ≤ 3 .

Specify the Hessian matrix and linear multiplier vector for the objective function.

H = [1 -1; -1 2];
f = [-2; -6];

Specify the inequality constraint parameters.

A = [-1 0; 0 -1; 1 1; -1 2; 2 1];
b = [0; 0; 2; 2; 3];

Define Aeq and beq to indicate that there are no equality constraints.

n = length(f);
Aeq = zeros(0,n);
beq = zeros(0,1);

As a best practice, verify that H is positive definite using the chol function.

[~,p] = chol(H);

If p = 0, then H is positive definite.

p

p = 0

Create a default option set for mpcInteriorPointSolver.

opt = mpcInteriorPointOptions;

To cold start the solver, specify an initial guess of zeros for the elements of x.

x0 = zeros(n,1);

Solve the QP problem.

[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,opt);

Examine the solution x.

x

x = 2×1

 0.6667
 1.3333

 mpcInteriorPointSolver

2-97

Input Arguments
H — Hessian matrix
n-by-n matrix

Hessian matrix, specified as an n-by-n matrix, where n > 0 is the number of optimization variables.

The interior-point QP algorithm requires that the Hessian matrix be positive definite. To determine
whether H is positive definite, use the chol function.

[~,p] = chol(H);

If p = 0, then H is positive definite. Otherwise, p is a positive integer.

f — Multiplier of the objective function linear term
column vector of length n

Multiplier of the objective function linear term, specified as a column vector of length n, where n is
the number of optimization variables.

A — Linear inequality constraint coefficients
m-by-n matrix | []

Linear inequality constraint coefficients, specified as an m-by-n matrix, where n is the number of
optimization variables and m is the number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,n).

b — Right-hand side of inequality constraints
column vector of length m

Right-hand side of inequality constraints, specified as a column vector of length m, where m is the
number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,1).

Aeq — Linear equality constraint coefficients
q-by-n matrix | []

Linear equality constraint coefficients, specified as a q-by-n matrix, where n is the number of
optimization variables and q <= n is the number of equality constraints. Equality constraints must be
linearly independent with rank(Aeq) = q.

If your problem has no equality constraints, use zeros(0,n).

beq — Right-hand side of equality constraints
column vector of length q

Right-hand side of equality constraints, specified as a column vector of length q, where q is the
number of equality constraints.

If your problem has no equality constraints, use zeros(0,1).

x0 — Initial guess
column vector of length n

2 Functions

2-98

Initial guess for the solution, where the equal portion of the inequality is true, specified as a column
vector of length n, where n is the number of optimization variables. For a cold start, specify the initial
guess as zeros(n,1).

options — Option set for mpcInteriorPointSolver
structure

Option set for mpcInteriorPointSolver, specified as a structure created using
mpcInteriorPointOptions.

Output Arguments
x — Optimal solution to the QP problem
column vector of length n

Optimal solution to the QP problem, returned as a column vector of length n, where n is the number
of optimization variables. mpcInteriorPointSolver always returns a value for x. To determine
whether the solution is optimal or feasible, check exitflag and feasible.

exitflag — Solution validity indicator
positive integer | 0 | -1 | -2

Solution validity indicator, returned as an integer according to the following table.

Value Description
> 0 x is optimal. exitflag represents the number of iterations performed during

optimization.
0 The maximum number of iterations was reached before the solver could find an optimal

solution. Solution x is feasible only if feasible is true.
-1 The problem appears to be infeasible; that is, the constraint Ax ≤ b cannot be satisfied.

feasible — Solution feasibility
logical scalar

Solution feasibility, returned as a logical scalar. When exitflag is 0, the solver reached the
maximum number of iterations without finding an optimal solution. This suboptimal solution, returned
in x, is feasible only if feasible is true.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields.

Field Description
ineqlin Multipliers of the inequality constraints, returned as a vector of length n. When the

solution is optimal, the elements of ineqlin are nonnegative.
eqlin Multipliers of the equality constraints, returned as a vector of length q. There are no sign

restrictions in the optimal solution.

 mpcInteriorPointSolver

2-99

Tips
• To determine whether H is positive definite, use the chol function.

[~,p] = chol(H);

If p = 0, then H is positive definite. Otherwise, p is a positive integer.
• mpcInteriorPointSolver provides access to the interior-point QP solver used by Model

Predictive Control Toolbox software. Use this command to solve QP problems in your own custom
MPC applications. For an example of a custom MPC application, see “Solve Custom MPC
Quadratic Programming Problem and Generate Code”. This example uses mpcActiveSetSolver,
however, the workflow applies to mpcInteriorPointSolver as well.

Algorithms
mpcInteriorPointSolver solves the QP problem using an interior-point method. For more
information, see “QP Solvers”.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can use mpcInteriorPointSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcInteriorPointOptions. Create the function
myCode, which uses mpcInteriorPointSolver and mpcInteriorPointOptions.

function [out1,out2] = myCode(in1,in2)
%#codegen
...
options = mpcInteriorPointOptions;
[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,Beq,x0,options);
...

Generate C code with MATLAB Coder.

func = 'myCode';
cfg = coder.config('mex'); % or 'lib', 'dll'
codegen('-config',cfg,func,'-o',func);

• For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double' or 'single' using mpcInteriorPointOptions.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
mpcInteriorPointOptions | mpcActiveSetSolver | quadprog

Topics
“QP Solvers”
“Solve Custom MPC Quadratic Programming Problem and Generate Code”

2 Functions

2-100

Introduced in R2020a

 mpcInteriorPointSolver

2-101

mpcmove
Compute optimal control action and update controller states

Syntax
mv = mpcmove(MPCobj,xc,ym,r,v)
[mv,info] = mpcmove(MPCobj,xc,ym,r,v)
[___] = mpcmove(___ ,options)

Description
Use this command to simulate an MPC controller in closed-loop with a plant model. Call mpcmove
repeatedly in a for loop to calculate the manipulated variable and update the controller states at each
time step.

mv = mpcmove(MPCobj,xc,ym,r,v) returns the optimal move mv and updates the states xc of the
controller MPCobj.

The manipulated variable mv at the current time is calculated given:

• the controller object, MPCobj,
• a pointer to the current estimated extended state, xc,
• the measured plant outputs, ym,
• the output references, r,
• and the measured disturbance input, v.

If ym, r or v is specified as [], or if it is missing as a last input argument, mpcmove uses the
appropriate MPCobj.Model.Nominal value instead.

When using default state estimation, mpcmove also updates the controller state referenced by the
handle object xc. Therefore, when using default state estimation, xc always points to the updated
controller state. When using custom state estimation, you should update xc prior to each mpcmove
call.

[mv,info] = mpcmove(MPCobj,xc,ym,r,v) returns additional information about the
optimization problem solved to calculate mv.

[___] = mpcmove(___ ,options) overrides default constraints and weights in MPCobj with the
values specified in Options, an mpcmoveopt object. Use Options to provide run-time adjustment of
constraints and weights during the closed-loop simulation.

Examples

Simulate Closed-Loop Response Using mpcMove

Perform closed-loop simulation of a plant with one MV and one measured OV.

Define a plant model and create a model predictive controller with MV constraints.

2 Functions

2-102

ts = 2;
Plant = ss(0.8,0.5,0.25,0,ts);
mpcobj = mpc(Plant);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

mpcobj.MV(1).Min = -2;
mpcobj.MV(1).Max = 2;

Obtain an handle object pointing to the controller state.

xc = mpcstate(mpcobj)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
MPCSTATE object with fields
 Plant: 0
 Disturbance: 0
 Noise: [1x0 double]
 LastMove: 0
 Covariance: [2x2 double]

The controller has one state for the internal plant model, one for the disturbance model, and one to
hold the last value of the manipulated variable. All these three states are initialized to zero.

Set the reference signal. There is no measured disturbance.

r = 1;

Simulate the closed-loop response by calling mpcmove iteratively. In the simulation, assume that the
simulated plant is identical to the predictive model. Therefore the plant state x in this case is
identical to xc.Plant and the plant output is y = C*x + D*u = 0.25*x = 0.25*xc.Plant. Here,
mpcmove updates the controller state referenced by xc (therefore including xc.Plant), and returns
the manipulated variable in u(i), which is used just for plotting.

t = 0:ts:40;
N = length(t);
y = zeros(N,1);
u = zeros(N,1);
for i = 1:N
 y(i) = 0.25*xc.Plant;
 u(i) = mpcmove(mpcobj,xc,y(i),r);
end

Analyze the result.

[ts,us] = stairs(t,u);
plot(ts,us,'r-',t,y,'b--')
legend('MV','OV')

 mpcmove

2-103

Modify the MV upper bound as the simulation proceeds using an mpcmoveopt object. Since the
options argument overrides selected mpcobj properties, specify MV constraints again.

MPCopt = mpcmoveopt;
MPCopt.MVMin = -2;
MPCopt.MVMax = 2;

Simulate the closed-loop response and introduce the real-time upper limit change at eight seconds
(the fifth iteration step).

xc = mpcstate(mpcobj);
y = zeros(N,1);
u = zeros(N,1);
for i = 1:N
 y(i) = 0.25*xc.Plant;
 if i == 5
 MPCopt.MVMax = 1;
 end
 u(i) = mpcmove(mpcobj,xc,y(i),r,[],MPCopt);
end

Analyze the results.

[ts,us] = stairs(t,u);
plot(ts,us,'r-',t,y,'b--')
legend('MV','OV')

2 Functions

2-104

Evaluate Scenario at Specific Time Instant

Define a plant model.

ts = 2;
Plant = ss(0.8,0.5,0.25,0,ts);

Create a model predictive controller with constraints on both the manipulated variable and the rate
of change of the manipulated variable. The prediction horizon is 10 intervals, and the control horizon
is blocked.

MPCobj = mpc(Plant,ts,10,[2 3 5]);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

MPCobj.MV(1).Min = -2;
MPCobj.MV(1).Max = 2;
MPCobj.MV(1).RateMin = -1;
MPCobj.MV(1).RateMax = 1;

Initialize (and return an handle to) the controller internal state for simulation.

xc = mpcstate(MPCobj);

 mpcmove

2-105

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

xc.Plant = 2.8;
xc.LastMove = 0.85;

Compute the optimal control move at the current time.

y = 0.25*xc.Plant;
r = 1;
[u,Info] = mpcmove(MPCobj,xc,y,r);

Analyze the predicted optimal sequences.

[ts,us] = stairs(Info.Topt,Info.Uopt);
plot(ts,us,'r-',Info.Topt,Info.Yopt,'b--')
legend('MV','OV')

plot ignores Info.Uopt(end) as it is NaN.

Examine the optimal cost.

Info.Cost

ans = 0.0793

2 Functions

2-106

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

xc — Current controller state handle
mpcstate object

Current controller state handle, specified as an mpcstate object.

Before you begin a simulation with mpcmove, initialize the controller, and return an handle to its state
using xc = mpcstate(MPCobj). Then, modify the default properties of xc as appropriate. mpcmove
modifies the controller state. The handle object xc always reflect the current (updated) state of the
controller.

If you are using default state estimation, mpcmove expects xc to represent xc[n|n-1]. The mpcmove
command updates the state values in the previous control interval with that information. Therefore,
you should not programmatically update xc at all. The default state estimator employs a steady-state
Kalman filter.

If you are using custom state estimation, mpcmove expects xc to represent xc[n|n]. Therefore, prior
to each mpcmove command, you must set xc.Plant, xc.Disturbance, and xc.Noise to the best
estimates of these states (using the latest measurements) at the current control interval.

ym — Current measured output values
column vector of length Nym

Current measured output values at time k, specified as a column vector of length Nym, where Nym is
the number of measured outputs.

If you are using custom state estimation, set ym = [].

r — Plant output reference values
p-by-Ny array

Plant output reference values, specified as a p-by-Ny array, where p is the prediction horizon of
MPCobj and Ny is the number of outputs. Row r(i,:) defines the reference values at step i of the
prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmove duplicates the last row to
fill the p-by-Ny array. If you supply exactly one row, therefore, a constant reference applies for the
entire prediction horizon.

To implement reference previewing, which can improve tracking when a reference varies in a
predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
(p+1)-by-Nmd array

Current and anticipated measured disturbances, specified as a (p+1)-by-Nmd array, where p is the
prediction horizon of MPCobj and Nmd is the number of measured disturbances. The first row of v

 mpcmove

2-107

specifies the current measured disturbance values. Row v(i+1,:) defines the anticipated
disturbance values at step i of the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant model does not
include measured disturbances, use v = [].

If your model includes measured disturbances, v must contain at least one row. If v contains fewer
than p+1 rows, mpcmove duplicates the last row to fill the (p+1)-by-Nmd array. If you supply exactly
one row, a constant measured disturbance applies for the entire prediction horizon.

To implement disturbance previewing, which can improve tracking when a disturbance varies in a
predictable manner, v must contain the anticipated variations, ideally for p steps.

options — Run-time options
mpcmoveopt object

Run-time options, specified as an mpcmoveopt object. Use options to override selected properties
of MPCobj during simulation. These options apply to the current mpcmove time instant only. Using
options yields the same result as redefining or modifying MPCobj before each call to mpcmove, but
involves considerably less overhead. Using options is equivalent to using an MPC Controller
Simulink block in combination with optional input signals that modify controller settings, such as MV
and OV constraints.

Output Arguments
mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length Nmv, where Nmv is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

• Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

• Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

Uopt — Optimal manipulated variable sequence
(p+1)-by-Nmv array

Predicted optimal manipulated variable adjustments (moves), returned as a (p+1)-by-Nmv array,
where p is the prediction horizon and Nmv is the number of manipulated variables.

2 Functions

2-108

Uopt(i,:) contains the calculated optimal values at time k+i-1, for i = 1,...,p, where k is the
current time. The first row of Info.Uopt contains the same manipulated variable values as output
argument mv. Since the controller does not calculate optimal control moves at time k+p, Uopt(p
+1,:) is equal to Uopt(p,:).

Yopt — Optimal output variable sequence
(p+1)-by-Ny array

Optimal output variable sequence, returned as a (p+1)-by-Ny array, where p is the prediction horizon
and Ny is the number of outputs.

The first row of Info.Yopt contains the calculated outputs at time k based on the estimated states
and measured disturbances; it is not the measured output at time k. Yopt(i,:) contains the
predicted output values at time k+i-1, for i = 1,...,p+1.

Yopt(i,:) contains the calculated output values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Yopt(1,:) is computed based on the estimated states and measured disturbances.

Xopt — Optimal prediction model state sequence
(p+1)-by-Nx array

Optimal prediction model state sequence, returned as a (p+1)-by-Nx array, where p is the prediction
horizon and Nx is the number of states in the plant and unmeasured disturbance models (states from
noise models are not included).

Xopt(i,:) contains the calculated state values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Xopt(1,:) is the same as the current states state values.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt(1) = 0, representing the current
time. Subsequent time steps Topt(i) are given by Ts*(i-1), where Ts = MPCobj.Ts is the
controller sample time.

Use Topt when plotting the Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, ε, used in constraint softening, returned as 0 or a positive scalar value.

• ε = 0 — All constraints were satisfied for the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is violated, ε

represents the worst-case soft constraint violation (scaled by your ECR values for each
constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer | 0 | -1 | -2

Number of solver iterations, returned as one of the following:

 mpcmove

2-109

• Positive integer — Number of iterations needed to solve the optimization problem that determines
the optimal sequences.

• 0 — Optimization problem could not be solved in the specified maximum number of iterations.
• –1 — Optimization problem was infeasible. An optimization problem is infeasible if no solution can

satisfy all the hard constraints.
• –2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
'feasible' | 'infeasible' | 'unrealiable'

Optimization solution status, returned as one of the following:

• 'feasible' — Optimal solution was obtained (Iterations > 0)
• 'infeasible' — Solver detected a problem with no feasible solution (Iterations = –1) or a

numerical error occurred (Iterations = –2)
• 'unreliable' — Solver failed to converge (Iterations = 0). In this case, if

MPCobj.Optimizer.UseSuboptimalSolution is false, u freezes at the most recent
successful solution. Otherwise, it uses the suboptimal solution found during the last solver
iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its objectives. For more information, see “Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible', or when QPCode = 'feasible'
and MPCobj.Optimizer.UseSuboptimalSolution is true.

Tips
• mpcmove updates xc, even though it is an input argument.
• If ym, r or v is specified as [], or if it is missing as a last input argument, mpcmove uses the

appropriate MPCobj.Model.Nominal value instead.
• To view the predicted optimal behavior for the entire prediction horizon, plot the appropriate

sequences provided in Info.
• To determine the optimization status, check Info.Iterations and Info.QPCode.

Alternatives
• Use sim for plant mismatch and noise simulation when not using run-time constraints or weight

changes.
• Use the MPC Designer app to interactively design and simulate model predictive controllers.
• Use the MPC Controller block in Simulink and for code generation.
• Use mpcmoveCodeGeneration to simulate an MPC controller prior to code generation.

See Also
mpc | mpcmoveopt | mpcstate | review | sim | setEstimator | getEstimator

2 Functions

2-110

Topics
“Improving Control Performance with Look-Ahead (Previewing)”
“Switching Controllers Based on Optimal Costs”
“Understanding Control Behavior by Examining Optimal Control Sequence”

Introduced before R2006a

 mpcmove

2-111

mpcmoveAdaptive
Compute optimal control with prediction model updating

Syntax
mv = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v)
[mv,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v)
[___] = mpcmoveAdaptive(___ ,options)

Description
mv = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v) computes the optimal
manipulated variable moves at the current time. This result depends on the properties contained in
the MPC controller, the controller states, an updated prediction model, and the nominal values. The
result also depends on the measured output variables, the output references (setpoints), and the
measured disturbance inputs. mpcmoveAdaptive updates the controller state, x, when using default
state estimation. Call mpcmoveAdaptive repeatedly to simulate closed-loop model predictive control.

[mv,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v) returns additional details
about the solution in a structure. To view the predicted optimal trajectory for the entire prediction
horizon, plot the sequences provided in info. To determine whether the optimal control calculation
completed normally, check info.Iterations and info.QPCode.

[___] = mpcmoveAdaptive(___ ,options) alters selected controller settings using options you
specify with mpcmoveopt. These changes apply for the current time instant only, enabling a
command-line simulation using mpcmoveAdaptive to mimic the Adaptive MPC Controller block in
Simulink in a computationally efficient manner.

Input Arguments
MPCobj — MPC controller
MPC controller object

MPC controller, specified as an implicit MPC controller object. To create the MPC controller, use the
mpc command.

x — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveAdaptive, initialize the controller state using x =
mpcstate(MPCobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmoveAdaptive expects x to represent x[n|n-1]. The
mpcmoveAdaptive command updates the state values in the previous control interval with that
information. Therefore, you should not programmatically update x at all. The default state estimator
employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveAdaptive expects x to represent x[n|n].
Therefore, prior to each mpcmoveAdaptive command, you must set x.Plant, x.Disturbance, and

2 Functions

2-112

x.Noise to the best estimates of these states (using the latest measurements) at the current control
interval.

For more information on state estimation for adaptive MPC and time-varying MPC, see “State
Estimation”.

Plant — Updated prediction model
discrete-time state-space model | model array

Updated prediction model, specified as one of the following:

• A delay-free, discrete-time state-space (ss) model. This plant is the update to
MPCobj.Model.Plant and it must:

• Have the same sample time as the controller; that is, Plant.Ts must match MPCobj.Ts
• Have the same input and output signal configurations, such as type, order, and dimensions
• Define the same states as the controller prediction model, MPCobj.Model.Plant

• An array of up to p+1 delay-free, discrete-time state-space models, where p is the prediction
horizon of MPCobj. Use this option to vary the controller prediction model over the prediction
horizon.

If Plant contains fewer than p+1 models, the last model repeats for the rest of the prediction
horizon.

Tip If you use a plant other than a delay-free, discrete-time state-space model to define the
prediction model in MPCobj, you can convert it to such a model to determine the prediction model
structure.

If the
original
plant is

Then

Not a
state-
space
model

Convert it to a state-space model using ss.

A
continuou
s-time
model

Convert it to a discrete-time model with the same sample time as the controller,
MPCobj.Ts, using c2d with default forward Euler discretization.

A model
with
delays

Convert the delays to states using absorbDelay.

Nominal — Updated nominal conditions
structure | structure array | []

Updated nominal conditions, specified as one of the following:

• A structure of with the following fields:

 mpcmoveAdaptive

2-113

Field Description Default
X Plant state at operating point []
U Plant input at operating point, including manipulated

variables and measured and unmeasured disturbances
[]

Y Plant output at operating point []
DX For continuous-time models, DX is the state derivative at

operating point: DX=f(X,U). For discrete-time models, DX=x(k
+1)-x(k)=f(X,U)-X.

[]

• An array of up to p+1 nominal condition structures, where p is the prediction horizon of MPCobj.
Use this option to vary controller nominal conditions over the prediction horizon.

If Nominal contains fewer than p+1 structures, the last structure repeats for the rest of the
prediction horizon.

If Nominal is empty, [], or if a field is missing or empty, mpcmoveAdaptive uses the corresponding
MPCobj.Model.Nominal value.

ym — Current measured outputs
row vector of length Nym

Current measured outputs, specified as a row vector of length Nym vector, where Nym is the number of
measured outputs.

If you are using custom state estimation, ym is ignored. If you set ym = [], then mpcmoveAdaptive
uses the appropriate nominal value.

r — Plant output reference values
p-by-Ny array | []

Plant output reference values, specified as a p-by-Ny array, where p is the prediction horizon of
MPCobj and Ny is the number of outputs. Row r(i,:) defines the reference values at step i of the
prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveAdaptive duplicates the
last row to fill the p-by-Ny array. If you supply exactly one row, therefore, a constant reference applies
for the entire prediction horizon.

If you set r = [], then mpcmoveAdaptive uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies in a
predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
p-by-Nmd array | []

Current and anticipated measured disturbances, specified as a p-by-Nmd array, where p is the
prediction horizon of MPCobj and Nmd is the number of measured disturbances. Row v(i,:) defines
the expected measured disturbance values at step i of the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant model does not
include measured disturbances, use v = [].

2 Functions

2-114

v must contain at least one row. If v contains fewer than p rows, mpcmoveAdaptive duplicates the
last row to fill the p-by-Nmd array. If you supply exactly one row, therefore, a constant measured
disturbance applies for the entire prediction horizon.

If you set v = [], then mpcmoveAdaptive uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance varies in a
predictable manner, v must contain the anticipated variations, ideally for p steps.

options — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of MPCobj, specified as an options object you create with
mpcmoveopt. These options apply to the current mpcmoveAdaptive time instant only. Using
options yields the same result as redefining or modifying MPCobj before each call to
mpcmoveAdaptive, but involves considerably less overhead. Using options is equivalent to using
an Adaptive MPC Controller Simulink block in combination with optional input signals that modify
controller settings, such as MV and OV constraints.

Output Arguments
mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length Nmv, where Nmv is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

• Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

• Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

Uopt — Optimal manipulated variable sequence
(p+1)-by-Nmv array

Predicted optimal manipulated variable adjustments (moves), returned as a (p+1)-by-Nmv array,
where p is the prediction horizon and Nmv is the number of manipulated variables.

Uopt(i,:) contains the calculated optimal values at time k+i-1, for i = 1,...,p, where k is the
current time. The first row of Info.Uopt contains the same manipulated variable values as output

 mpcmoveAdaptive

2-115

argument mv. Since the controller does not calculate optimal control moves at time k+p, Uopt(p
+1,:) is equal to Uopt(p,:).

Yopt — Optimal output variable sequence
(p+1)-by-Ny array

Optimal output variable sequence, returned as a (p+1)-by-Ny array, where p is the prediction horizon
and Ny is the number of outputs.

The first row of Info.Yopt contains the calculated outputs at time k based on the estimated states
and measured disturbances; it is not the measured output at time k. Yopt(i,:) contains the
predicted output values at time k+i-1, for i = 1,...,p+1.

Yopt(i,:) contains the calculated output values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Yopt(1,:) is computed based on the estimated states and measured disturbances.

Xopt — Optimal prediction model state sequence
(p+1)-by-Nx array

Optimal prediction model state sequence, returned as a (p+1)-by-Nx array, where p is the prediction
horizon and Nx is the number of states in the plant and unmeasured disturbance models (states from
noise models are not included).

Xopt(i,:) contains the calculated state values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Xopt(1,:) is the same as the current states state values.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt(1) = 0, representing the current
time. Subsequent time steps Topt(i) are given by Ts*(i-1), where Ts = MPCobj.Ts is the
controller sample time.

Use Topt when plotting the Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, ε, used in constraint softening, returned as 0 or a positive scalar value.

• ε = 0 — All constraints were satisfied for the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is violated, ε

represents the worst-case soft constraint violation (scaled by your ECR values for each
constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer | 0 | -1 | -2

Number of solver iterations, returned as one of the following:

• Positive integer — Number of iterations needed to solve the optimization problem that determines
the optimal sequences.

2 Functions

2-116

• 0 — Optimization problem could not be solved in the specified maximum number of iterations.
• –1 — Optimization problem was infeasible. An optimization problem is infeasible if no solution can

satisfy all the hard constraints.
• –2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
'feasible' | 'infeasible' | 'unrealiable'

Optimization solution status, returned as one of the following:

• 'feasible' — Optimal solution was obtained (Iterations > 0)
• 'infeasible' — Solver detected a problem with no feasible solution (Iterations = –1) or a

numerical error occurred (Iterations = –2)
• 'unreliable' — Solver failed to converge (Iterations = 0). In this case, if

MPCobj.Optimizer.UseSuboptimalSolution is false, u freezes at the most recent
successful solution. Otherwise, it uses the suboptimal solution found during the last solver
iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its objectives. For more information, see “Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible', or when QPCode = 'feasible'
and MPCobj.Optimizer.UseSuboptimalSolution is true.

Tips
• If the prediction model is time-invariant, use mpcmove.
• Use the Adaptive MPC Controller Simulink block for simulations and code generation.

See Also
mpc | mpcmove | mpcmoveopt | mpcstate | review | sim | setEstimator | getEstimator

Topics
“Adaptive MPC”
“Time-Varying MPC”
“Optimization Problem”

Introduced in R2014b

 mpcmoveAdaptive

2-117

mpcmoveCodeGeneration
Compute optimal control moves with code generation support

Syntax
[mv,newStateData] = mpcmoveCodeGeneration(configData,stateData,onlineData)
[___ ,info] = mpcmoveCodeGeneration(___)

Description
[mv,newStateData] = mpcmoveCodeGeneration(configData,stateData,onlineData)
computes optimal MPC control moves and supports code generation for deployment to real-time
targets. The input data structures, generated using getCodeGenerationData, define the MPC
controller to simulate.

mpcmoveCodeGeneration does not check input arguments for correct dimensions and data types.

[___ ,info] = mpcmoveCodeGeneration(___) returns additional information about the
optimization result, including the number of iterations and the objective function cost.

Examples

Compute Optimal Control Moves Using Code Generation Data Structures

Create a proper plant model.

plant = rss(3,1,1);
plant.D = 0;

Specify the controller sample time.

Ts = 0.1;

Create an MPC controller.

mpcObj = mpc(plant,Ts);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Create code generation data structures.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj);

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.

2 Functions

2-118

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Initialize the plant states to zero to match the default states used by the MPC controller.

Run a closed-loop simulation. At each control interval, update the online data structure and call
mpcmoveCodeGeneration to compute the optimal control moves.

x = zeros(size(plant.B,1),1); % Initialize plant states to zero (|mpcObj| default).
Tsim = 20;
for i = 1:round(Tsim/Ts)+1
 % Update plant output.
 y = plant.C*x;
 % Update measured output in online data.
 onlineData.signals.ym = y;
 % Update reference signal in online data.
 onlineData.signals.ref = 1;
 % Compute control actions.
 [u,statedata] = mpcmoveCodeGeneration(configData,stateData,onlineData);
 % Update plant state.
 x = plant.A*x + plant.B*u;
end

Generate MEX function with MATLAB® Coder™, specifying configData as a constant.

func = 'mpcmoveCodeGeneration';
funcOutput = 'mpcmoveMEX';
Cfg = coder.config('mex');
Cfg.DynamicMemoryAllocation = 'off';
codegen('-config',Cfg,func,'-o',funcOutput,'-args',...
 {coder.Constant(configData),stateData,onlineData});

Code generation successful.

Input Arguments
configData — MPC configuration parameters
structure

MPC configuration parameters that are constant at run time, specified as a structure generated using
getCodeGenerationData.

Note When using codegen, configData must be defined as coder.Constant.

stateData — Controller state
structure

Controller state at run time, specified as a structure. Generate the initial state structure using
getCodeGenerationData. For subsequent control intervals, use the updated controller state from
the previous interval. In general, use the newStateData structure directly.

If custom state estimation is enabled, you must manually update the stateData structure during
each control interval. For more information, see “Custom State Estimation”.

 mpcmoveCodeGeneration

2-119

stateData has the following fields:

Plant — Plant model state estimates
MPCobj nominal plant states (default) | column vector of length nxp

Plant model state estimates, specified as a column vector of length Nxp, where Nxp is the number of
plant model states.

Note If custom state estimation is enabled, update Plant at each control interval. Otherwise, do not
change this field. Instead use the values returned by either getCodeGenerationData or
mpcmoveCodeGeneration.

Disturbance — Unmeasured disturbance model state estimates
[] (default) | column vector

Unmeasured disturbance model state estimates, specified as a column vector of length Nxd, where Nxd
is the number of unmeasured disturbance model states. Disturbance contains the input disturbance
model states followed by the output disturbance model states.

To view the input and output disturbance models, use getindist and getoutdist respectively.

Note If custom state estimation is enabled, update Disturbance at each control interval.
Otherwise, do not change this field. Instead use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

Noise — Output measurement noise model state estimates
[] (default) | column vector

Output measurement noise model state estimates, specified as a column vector of length Nxn, where
Nxn is the number of noise model states.

Note If custom state estimation is enabled, update Noise at each control interval. Otherwise, do not
change this field. Instead use the values returned by either getCodeGenerationData or
mpcmoveCodeGeneration.

LastMove — Manipulated variable control moves from previous control interval
MPCobj nominal MV values (default) | column vector

Manipulated variable control moves from previous control interval, specified as a column vector of
length Nmv, where Nmv is the number of manipulated variables.

Note Do not change the value of LastMove. Always use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

Covariance — Covariance matrix for controller state estimates
symmetrical array

2 Functions

2-120

Covariance matrix for controller state estimates, specified as a symmetrical N-by-N array, where N is
number of extended controller states; that is, the sum of Nxp, Nxd, and Nxn.

If the controller uses custom state estimation, Covariance is empty.

Note Do not change the value of Covariance. Always use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

iA — Active inequality constraints
false (default) | logical vector

Active inequality constraints, where the equal portion of the inequality is true, specified as a logical
vector of length M. If iA(i) is true, then the ith inequality is active for the latest QP solver solution.

Note Do not change the value of iA. Always use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

onlineData — Online controller data
structure

Online controller data that you must update at run time, specified as a structure with the following
fields. Generate the initial structure using getCodeGenerationData.

signals — Updated input and output signals
structure

Updated input and output signals, specified as a structure with the following fields:

ym — Measured outputs
vector

Measured outputs, specified as a vector of length Nym, where Nym is the number of measured outputs.

By default, getCodeGenerationData sets ym to the nominal measured output values from the
controller.

ref — Output references
row vector | array

Output references, specified as one of the following:

• Row vector of length Ny, where Ny is the number of outputs.
• If you are using reference signal previewing with implicit or adaptive MPC, specify a p-by-Ny

array, where p is the prediction horizon.

By default,getCodeGenerationData sets ref to the nominal output values from the controller.

md — Measured disturbances
row vector | array

Measured disturbances, specified as:

 mpcmoveCodeGeneration

2-121

• A row vector of length Nmd, where Nmd is the number of measured disturbances.
• If you are using signal previewing with implicit or adaptive MPC, specify a p-by-Nmd array.

By default, if your controller has measured disturbances,getCodeGenerationData sets md to the
nominal measured disturbance values from the controller. Otherwise, this field is empty and ignored
by mpcmoveCodeGeneration.

mvTarget — Targets for manipulated variables
[] (default) | vector

Targets for manipulated variables, which replace the targets defined in configData.uTarget,
specified as one of the following:

• Vector of length Nmv, where Nmv is the number of manipulated variables
• [] to use the default targets defined in configData.uTarget

This field is ignored when using an explicit MPC controller.

externalMV — Manipulated variables externally applied to the plant
[] (default) | vector

Manipulated variables externally applied to the plant, specified as:

• A vector of length Nmv.
• [] to apply the optimal control moves to the plant.

weights — Updated QP optimization weights
structure

Updated QP optimization weights, specified as a structure. If you do not expect tuning weights to
change at run time, ignore weights. This field is ignored when using an explicit MPC controller.

This structure contains the following fields:

y — Output variable tuning weights
[] (default) | row vector | array

Output variable tuning weights that replace the original controller output weights at run time at run
time, specified as a row vector or array of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length Ny, where Ny is
the number of output variables.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, specify an array
with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the output variable tuning weights for one prediction horizon step. If you specify fewer
than p rows, the weights in the final row are used for the remaining steps of the prediction horizon.

If y is empty, [], the default weights defined in the original MPC controller are used.

u — Manipulated variable tuning weights
[] (default) | row vector | array

Manipulated variable tuning weights that replace the original controller manipulated variable
weights at run time, specified as a row vector or array of nonnegative values.

2 Functions

2-122

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable tuning weights for one prediction horizon step. If you specify
fewer than p rows, the weights in the final row are used for the remaining steps of the prediction
horizon.

If u is empty, [], the default weights defined in the original MPC controller are used.

du — Manipulated variable rate tuning weights
[] (default) | row vector | array

Manipulated variable rate tuning weights that replace the original controller manipulated variable
rate weights at run time, specified as a row vector or array of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable rate tuning weights for one prediction horizon step. If you
specify fewer than p rows, the weights in the final row are used for the remaining steps of the
prediction horizon.

If du is empty, [], the default weights defined in the original MPC controller are used.

ecr — Weight on slack variable used for constraint softening
[] (default) | nonnegative scalar

Weight on slack variable used for constraint softening, specified as a nonnegative scalar.

If ecr is empty, [], the default weight defined in the original MPC controller are used.

limits — Updated input and output constraints
structure

Updated input and output constraints, specified as a structure. If you do not expect constraints to
change at run time, ignore limits. This field is ignored when using an explicit MPC controller.

This structure contains the following fields:

ymin — Output variable lower bounds
[] (default) | column vector

Output variable lower bounds, specified as a column vector of length Ny. ymin(i) replaces the
OutputVariables(i).Min constraint from the original controller. If the
OutputVariables(i).Min property of the controller is specified as a vector, ymin(i) replaces the
first finite entry in this vector, and the remaining values shift to retain the same constraint profile.

If ymin is empty, [], the default bounds defined in the original MPC controller are used.

ymax — Output variable upper bounds
[] (default) | column vector

 mpcmoveCodeGeneration

2-123

Output variable upper bounds, specified as a column vector of length Ny. ymax(i) replaces the
OutputVariables(i).Max constraint from the original controller. If the
OutputVariables(i).Max property of the controller is specified as a vector, ymax(i) replaces the
first finite entry in this vector, and the remaining values shift to retain the same constraint profile.

If ymax is empty, [], the default bounds defined in the original MPC controller are used.

umin — Manipulated variable lower bounds
[] (default) | column vector

Manipulated variable lower bounds, specified as a column vector of length Nmv. umin(i) replaces the
ManipulatedVariables(i).Min constraint from the original controller. If the
ManipulatedVariables(i).Min property of the controller is specified as a vector, umin(i)
replaces the first finite entry in this vector, and the remaining values shift to retain the same
constraint profile.

If umin is empty, [], the default bounds defined in the original MPC controller are used.

umax — Manipulated variable upper bounds
[] (default) | column vector

Manipulated variable upper bounds, specified as a column vector of length Nmv. umax(i) replaces
the ManipulatedVariables(i).Max constraint from the original controller. If the
ManipulatedVariables(i).Max property of the controller is specified as a vector, umax(i)
replaces the first finite entry in this vector, and the remaining values shift to retain the same
constraint profile.

If umax is empty, [], the default bounds defined in the original MPC controller are used.

customconstraints — Updated custom mixed input/output constraints
structure

Updated custom mixed input/output constraints, specified as a structure. This field is ignored when
using an explicit MPC controller.

This structure has the following fields:

E — Manipulated variable constraint constant
[] (default) | Nc-by-Nmv array

Manipulated variable constraint constant, specified as an Nc-by-Nmv array, where Nc is the number of
constraints, and Nmv is the number of manipulated variables.

If E is empty, [], the corresponding constraint defined in the original MPC controller are used.

F — Controlled output constraint constant
[] (default) | Nc-by-Ny array

Controlled output constraint constant, specified as an Nc-by-Ny array, where Ny is the number of
controlled outputs (measured and unmeasured).

G — Mixed input/output constraint constant
[] (default) | column vector of length Nc

Mixed input/output constraint constant, specified as a column vector of length Nc.

2 Functions

2-124

S — Measured disturbance constraint constant
[] (default) | Nc-by-Nv array

Measured disturbance constraint constant, specified as an Nc-by-Nmd array, where Nmd is the number
of measured disturbances.

horizons — Updated controller horizons
structure

Updated controller horizons, specified as a structure. To vary horizons at run time, first create your
data structures using getCodeGenerationData setting the UseVariableHorizon name-value pair
to true. When you vary the horizons, you must specify both the prediction horizon and the control
horizon. For more information, see “Adjust Horizons at Run Time”.

This field is ignored when using an explicit MPC controller.

This structure has the following fields:

p — Prediction horizon
[] (default) | positive integer

Prediction horizon, which replaces the value of configData.p at run time, specified as a positive
integer.

Specifying p changes the:

• Number of rows in the optimal sequences returned in info
• The maximum dimensions of the fields in model when configData.IsLTV is true

m — Control horizon
[] (default) | positive integer | vector of positive integers

Control horizon, which replaces the value of configData.m at run time, specified as one of the
following:

• Positive integer, m, between 1 and p, inclusive, where p is the prediction horizon (horizons.p).
In this case, the controller computes m free control moves occurring at times k through k+m-1,
and holds the controller output constant for the remaining prediction horizon steps from k+m
through k+p-1. Here, k is the current control interval. For optimal trajectory planning set m equal
to p.

• Vector of positive integers, [m1, m2, …], where the sum of the integers equals the prediction
horizon, p. In this case, the controller computes M blocks of free moves, where M is the length of
the control horizon vector. The first free move applies to times k through k+m1-1, the second free
move applies from time k+m1 through k+m1+m2-1, and so on. Using block moves can improve the
robustness of your controller compared to the default case.

model — Updated plant and nominal values
structure

Updated plant and nominal values for adaptive MPC and time-varying MPC, specified as a structure.
model is only available if you specify isAdaptive or isLTV as true when creating code generation
data structures.

This structure contains the following fields:

 mpcmoveCodeGeneration

2-125

A — State matrix of discrete-time state-space plant model
Nx-by-Nx array | Nx-by-Nx-by-(p+1) array

State matrix of discrete-time state-space plant model, specified as an:

• Nx-by-Nx array when using adaptive MPC,
• Nx-by-Nx-by-(p+1) array when using time-varying MPC,

where Nx is the number of plant states.

B — Input-to-state matrix of discrete-time state-space plant model
Nx-by-Nu array | Nx-by-Nu-by-(p+1) array

Input-to-state matrix of discrete-time state-space plant model, specified as an:

• Nx-by-Nu array when using adaptive MPC,
• Nx-by-Nu-by-(p+1) array when using time-varying MPC,

where Nu is the number of plant inputs.

C — State-to-output matrix of discrete-time state-space plant model
Ny-by-Nx array | Ny-by-Nx-by-(p+1) array

State-to-output matrix of discrete-time state-space plant model, specified as an:

• Ny-by-Nx array when using adaptive MPC.
• Ny-by-Nx-by-(p+1) array when using time-varying MPC.

D — Feedthrough matrix of discrete-time state-space plant model
Ny-by-Nu array | Ny-by-Nu-by-(p+1) array

Feedthrough matrix of discrete-time state-space plant model, specified as an:

• Ny-by-Nu array when using adaptive MPC.
• Ny-by-Nu-by-(p+1) array when using time-varying MPC.

Since MPC controllers do not support plants with direct feedthrough, specify D as an array of zeros.

X — Nominal plant states
column vector of length Nx | Nx-by-1-by-(p+1) array

Nominal plant states, specified as:

• A column vector of length Nx when using adaptive MPC.
• An Nx-by-1-by-(p+1) array when using time-varying MPC.

U — Nominal plant inputs
column vector of length Nu | Nu-by-1-by-(p+1) array

Nominal plant inputs, specified as:

• A column vector of length Nu when using adaptive MPC.
• An Nu-by-1-by-(p+1) array when using time-varying MPC.

2 Functions

2-126

Y — Nominal plant outputs
column vector of length Ny | Ny-by-1-by-(p+1) array

Nominal plant outputs, specified as:

• A column vector of length Nywhen using adaptive MPC.
• An Ny-by-1-by-(p+1) array when using time-varying MPC.

DX — Nominal plant state derivatives
column vector of length Nx | Nx-by-1-by-(p+1) array

Nominal plant state derivatives, specified as:

• A column vector of length Nx when using adaptive MPC.
• An Nx-by-1-by-(p+1) array when using time-varying MPC.

Output Arguments
mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length Nmv, where Nmv is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

• Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

• Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

newStateData — Updated controller state
structure

Updated controller state, returned as a structure. For subsequent control intervals, pass
newStateData to mpcmoveCodeGeneration as stateData.

If custom state estimation is enabled, use newStateData to manually update the state structure
before the next control interval. For more information, see “Custom State Estimation”.

info — Controller optimization information
structure

Controller optimization information, returned as a structure.

If you are using implicit or adaptive MPC, info contains the following fields:

 mpcmoveCodeGeneration

2-127

Field Description
Iterati
ons

Number of QP solver iterations

QPCode QP solver status code
Cost Objective function cost
Uopt Optimal manipulated variable adjustments
Yopt Optimal predicted output variable sequence
Xopt Optimal predicted state variable sequence
Topt Time horizon intervals
Slack Slack variable used in constraint softening

If configData.OnlyComputeCost is true, the optimal sequence information, Uopt, Yopt, Xopt,
Topt, and Slack, is not available:

For more information, see mpcmove and mpcmoveAdaptive.

If you are using explicit MPC, info contains the following fields:

Field Description
Region Region in which the optimal solution was found
ExitCod
e

Solution status code

For more information, see mpcmoveExplicit.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can generate code for both implicit and explicit MPC controllers.
• To generate code for computing optimal MPC control moves:

1 Generate data structures from an MPC controller or explicit MPC controller using
getCodeGenerationData.

2 To verify that your controller produces the expected closed-loop results, simulate it using
mpcmoveCodeGeneration in place of mpcmove.

3 Generate code for mpcmoveCodeGeneration using codegen. This step requires MATLAB
Coder software.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
getCodeGenerationData | mpcmove | mpcmoveExplicit | mpcmoveAdaptive | codegen

2 Functions

2-128

Topics
“Generate Code to Compute Optimal MPC Moves in MATLAB”
“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2016a

 mpcmoveCodeGeneration

2-129

mpcmoveExplicit
Compute optimal control using explicit MPC

Syntax
mv = mpcmoveExplicit(empcobj,x,ym,r)
[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v)
[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v,MVused)

Description
Use this command to simulate an explicit MPC controller in closed-loop with a plant model. Call
mpcmoveExplicit repeatedly in a for loop to calculate the manipulated variable and update the
controller states at each time step.

mv = mpcmoveExplicit(empcobj,x,ym,r) returns the optimal move mv and updates the states
xc of the controller empcobj.

The manipulated variable mv at the current time is calculated given:

• the controller object, empcobj,
• a pointer to the current estimated extended state, xc,
• the measured plant outputs, ym,
• the output references, r,
• and the measured disturbance input, v.

If ym, r or v is specified as [], or if it is missing as a last input argument, mpcmove uses the
appropriate MPCobj.Model.Nominal value instead.

When using default state estimation, mpcmoveExplicit also updates the controller state referenced
by the handle object xc. Therefore, when using default state estimation, xc always points to the
updated controller state. When using custom state estimation, you should update xc prior to each
mpcmoveExplicit call.

[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v) returns additional details about the
computation in a structure. To determine whether the optimal control calculation completed normally,
check the data in info.

[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v,MVused) specifies the manipulated
variable values used in the previous mpcmoveExplicit command, allowing a command-line
simulation to mimic the Explicit MPC Controller Simulink block with the optional external MV input
signal.

Examples

2 Functions

2-130

Simulate explicit MPC using mpcmoveExplicit

This example shows how to use mpcmoveExplicit to simulate a plant in closed loop with an explicit
MPC controller.

First, define the sample time, the plant (for this example, a double integrator), and create a
traditional MPC object.

Ts = 0.1;
plant = tf(1,[1 0 0]);
mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Define constraints on the manipulated variable.

mpcobj.MV = struct('Min',-1,'Max',1);

The MPC controller states include states from the plant model, the disturbance model noise model,
and the last values of the manipulated variables, in that order. To create a range structure where you
can specify the range for each state, reference, and manipulated variable, use
generateExplicitRange.

range = generateExplicitRange(mpcobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

If at run time any of these variables falls outside its range, the controller returns an error status and
sets the manipulated variables to their last values. Therefore, it is important that you do not
underestimate these ranges. For this example, use the following ranges.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];

range.Reference.Min = -2;
range.Reference.Max = 2;

range.ManipulatedVariable.Min = mpcobj.MV.Min -1;
range.ManipulatedVariable.Max = mpcobj.MV.Max +1;

Create an explicit MPC controller from the traditional MPC object and the range structure.

empcobj = generateExplicitMPC(mpcobj, range);

Regions found / unexplored: 9/ 0

Set up the number of simulation steps and initialize arrays to store the plant input and output signals
(so they can be plotted later).

N = round(5/Ts);
U = zeros(N,1);
Y = zeros(N,1);

 mpcmoveExplicit

2-131

Discretize the plant, and set up its initial condition.

dtplant = ss(c2d(plant,Ts));
x = [0 0]';

To obtain an handle (that is a pointer) to the controller state, use mpcstate.

xc = mpcstate(empcobj)

MPCSTATE object with fields
 Plant: [0 0]
 Disturbance: [1x0 double]
 Noise: [1x0 double]
 LastMove: 0
 Covariance: [2x2 double]

The controller has two states for the internal plant model, and one to hold the last value of the
manipulated variable. All these states are initialized to zero.

Iteratively simulate the closed-loop response to a reference signal of 0.8. To calculate the explicit
MPC controller move, use mpcmoveExplicit.

for k = 1:N

 % update plant measurement and store signal
 y = dtplant.C*x;
 Y(k)=y;

 % compute explicit MPC action and store signal
 u = mpcmoveExplicit(empcobj,xc,y,0.8);
 U(k)=u;

 % update plant state
 x = dtplant.A*x + dtplant.B*u;
end

Plot the resulting plant input and output signals.

plot(1:N,[U Y])
title('Closed loop response')
legend('mv','output')
xlabel('steps')
grid

2 Functions

2-132

Input Arguments
empcobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller to simulate, specified as an Explicit MPC controller object. Use
generateExplicitMPC to create an explicit MPC controller.

x — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveExplicit, initialize the controller state using x =
mpcstate(empcobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmoveExplicit expects x to represent x[n|n-1]. The
mpcmoveExplicit command updates the state values in the previous control interval with that
information. Therefore, you should not programmatically update x at all. The default state estimator
employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveExplicit expects x to represent x[n|n].
Therefore, prior to each mpcmoveExplicit command, you must set x.Plant, x.Disturbance, and
x.Noise to the best estimates of these states (using the latest measurements) at the current control
interval.

 mpcmoveExplicit

2-133

ym — Current measured outputs
vector

Current measured outputs, specified as a row vector of length Nym, where Nym is the number of
measured outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveExplicit uses the appropriate nominal value.

r — Plant output reference values
vector

Plant output reference values, specified as a vector of length Ny. mpcmoveExplicit uses a constant
reference for the entire prediction horizon. In contrast to mpcmove and mpcmoveAdaptive,
mpcmoveExplicit does not support reference previewing.

If you set r = [], then mpcmoveExplicit uses the appropriate nominal value.

v — Current and anticipated measured disturbances
vector

Current and anticipated measured disturbances, specified as a vector of length Nmd, where Nmd is the
number of measured disturbances. In contrast to mpcmove and mpcmoveAdaptive,
mpcmoveExplicit does not support disturbance previewing. If your plant model does not include
measured disturbances, use v = [].

MVused — Manipulated variable values from previous interval
vector

Manipulated variable values applied to the plant during the previous control interval, specified as a
vector of length Nmv, where Nmv is the number of manipulated variables. If this is the first
mpcmoveExplicit command in a simulation sequence, omit this argument. Otherwise, if the MVs
calculated by mpcmoveExplicit in the previous interval were overridden, set MVused to the correct
values in order to improve the controller state estimation accuracy. If you omit MVused,
mpcmoveExplicit assumes MVused = x.LastMove.

Output Arguments
mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length Nmv, where Nmv is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

• Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

• Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

2 Functions

2-134

info — Explicit MPC solution status
structure

Explicit MPC solution status, returned as a structure having the following fields.

ExitCode — Solution status code
1 | 0 | –1

Solution status code, returned as one of the following values:

• 1 — Successful solution.
• 0 — Failure. One or more controller input parameters is out of range.
• –1 — Undefined. Parameters are in range but an extrapolation must be used.

Region — Region to which current controller input parameters belong
positive integer | 0

Region to which current controller input parameters belong, returned as either a positive integer or
0. The integer value is the index of the polyhedron (region) to which the current controller input
parameters belong. If the solution failed, Region = 0.

Tips
• Use the Explicit MPC Controller Simulink block for simulation and code generation.

See Also
generateExplicitMPC | generateExplicitRange

Topics
“Explicit MPC Control of a Single-Input-Single-Output Plant”
“Explicit MPC”
“Design Workflow for Explicit MPC”

Introduced in R2014b

 mpcmoveExplicit

2-135

mpcmoveMultiple
Compute gain-scheduling MPC control action at a single time instant

Syntax
mv = mpcmoveMultiple(MPCArray,states,index,ym,r,v)
[mv,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v)
[___] = mpcmoveMultiple(___ ,options)

Description
mv = mpcmoveMultiple(MPCArray,states,index,ym,r,v) computes the optimal manipulated
variable moves at the current time using a model predictive controller selected by index from an
array of MPC controllers. This results depends upon the properties contained in the MPC controller
and the controller states. The result also depends on the measured plant outputs, the output
references (setpoints), and the measured disturbance inputs. mpcmoveMultiple updates the
controller state when default state estimation is used. Call mpcmoveMultiple repeatedly to simulate
closed-loop model predictive control.

[mv,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v) returns additional details
about the computation in a structure. To determine whether the optimal control calculation
completed normally, check the data in info.

[___] = mpcmoveMultiple(___ ,options) alters selected controller settings using options you
specify with mpcmoveopt. These changes apply for the current time instant only, allowing a
command-line simulation using mpcmoveMultiple to mimic the Multiple MPC Controllers block in
Simulink in a computationally efficient manner.

Input Arguments
MPCArray — MPC controllers
cell array of MPC controller objects

MPC controllers to simulate, specified as a cell array of traditional (implicit) MPC controller objects.
Use the mpc command to create the MPC controllers.

All the controllers in MPCArray must use either default state estimation or custom state estimation.
Mismatch is not permitted.

states — Current MPC controller states
cell array of mpcstate objects

Current controller states for each MPC controller in MPCArray, specified as a cell array of mpcstate
objects.

Before you begin a simulation with mpcmoveMultiple, initialize each controller state using x =
mpcstate(MPCobj). Then, modify the default properties of each state as appropriate.

If you are using default state estimation, mpcmoveMultiple expects x to represent x[n|n-1]
(where x is one entry in states, the current state of one MPC controller in MPCArray). The

2 Functions

2-136

mpcmoveMultiple command updates the state values in the previous control interval with that
information. Therefore, you should not programmatically update x at all. The default state estimator
employs a steady-state Kalman filter.

If you are using custom state estimation, mpcmoveMultiple expects x to represent x[n|n].
Therefore, prior to each mpcmoveMultiple command, you must set x.Plant, x.Disturbance, and
x.Noise to the best estimates of these states (using the latest measurements) at the current control
interval.

index — Index of selected controller
positive integer

Index of selected controller in the cell array MPCArray, specified as a positive integer.

ym — Current measured outputs
row vector

Current measured outputs, specified as a row vector of length Nym, where Nym is the number of
measured outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveMultiple uses the appropriate nominal value.

r — Plant output reference values
array

Plant output reference values, specified as a p-by-Ny array, where p is the prediction horizon of the
selected controller and Ny is the number of outputs. Row r(i,:) defines the reference values at step
i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveMultiple duplicates the
last row to fill the p-by-Ny array. If you supply exactly one row, therefore, a constant reference applies
for the entire prediction horizon.

If you set r = [], then mpcmoveMultiple uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies in a
predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
array

Current and anticipated measured disturbances, specified as a p-by-Nmd array, where p is the
prediction horizon of the selected controller and Nmd is the number of measured disturbances. Row
v(i,:) defines the expected measured disturbance values at step i of the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant model does not
include measured disturbances, use v = [].

v must contain at least one row. If v contains fewer than p rows, mpcmoveMultiple duplicates the
last row to fill the p-by-Nmd array. If you supply exactly one row, therefore, a constant measured
disturbance applies for the entire prediction horizon.

If you set v = [], then mpcmoveMultiple uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance varies in a
predictable manner, v must contain the anticipated variations, ideally for p steps.

 mpcmoveMultiple

2-137

options — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of the selected MPC controller, specified as an options object
you create with mpcmoveopt. These options apply to the current mpcmoveMultiple time instant
only. Using options yields the same result as redefining or modifying the selected controller before
each call to mpcmoveMultiple, but involves considerably less overhead. Using options is
equivalent to using a Multiple MPC Controllers Simulink block in combination with optional input
signals that modify controller settings, such as MV and OV constraints.

Output Arguments
mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length Nmv, where Nmv is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

• Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

• Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

Uopt — Optimal manipulated variable sequence
(p+1)-by-Nmv array

Predicted optimal manipulated variable adjustments (moves), returned as a (p+1)-by-Nmv array,
where p is the prediction horizon and Nmv is the number of manipulated variables.

Uopt(i,:) contains the calculated optimal values at time k+i-1, for i = 1,...,p, where k is the
current time. The first row of Info.Uopt contains the same manipulated variable values as output
argument mv. Since the controller does not calculate optimal control moves at time k+p, Uopt(p
+1,:) is equal to Uopt(p,:).

Yopt — Optimal output variable sequence
(p+1)-by-Ny array

Optimal output variable sequence, returned as a (p+1)-by-Ny array, where p is the prediction horizon
and Ny is the number of outputs.

2 Functions

2-138

The first row of Info.Yopt contains the calculated outputs at time k based on the estimated states
and measured disturbances; it is not the measured output at time k. Yopt(i,:) contains the
predicted output values at time k+i-1, for i = 1,...,p+1.

Yopt(i,:) contains the calculated output values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Yopt(1,:) is computed based on the estimated states and measured disturbances.

Xopt — Optimal prediction model state sequence
(p+1)-by-Nx array

Optimal prediction model state sequence, returned as a (p+1)-by-Nx array, where p is the prediction
horizon and Nx is the number of states in the plant and unmeasured disturbance models (states from
noise models are not included).

Xopt(i,:) contains the calculated state values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Xopt(1,:) is the same as the current states state values.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt(1) = 0, representing the current
time. Subsequent time steps Topt(i) are given by Ts*(i-1), where Ts = MPCobj.Ts is the
controller sample time.

Use Topt when plotting the Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, ε, used in constraint softening, returned as 0 or a positive scalar value.

• ε = 0 — All constraints were satisfied for the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is violated, ε

represents the worst-case soft constraint violation (scaled by your ECR values for each
constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer | 0 | -1 | -2

Number of solver iterations, returned as one of the following:

• Positive integer — Number of iterations needed to solve the optimization problem that determines
the optimal sequences.

• 0 — Optimization problem could not be solved in the specified maximum number of iterations.
• –1 — Optimization problem was infeasible. An optimization problem is infeasible if no solution can

satisfy all the hard constraints.
• –2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
'feasible' | 'infeasible' | 'unrealiable'

Optimization solution status, returned as one of the following:

 mpcmoveMultiple

2-139

• 'feasible' — Optimal solution was obtained (Iterations > 0)
• 'infeasible' — Solver detected a problem with no feasible solution (Iterations = –1) or a

numerical error occurred (Iterations = –2)
• 'unreliable' — Solver failed to converge (Iterations = 0). In this case, if

MPCobj.Optimizer.UseSuboptimalSolution is false, u freezes at the most recent
successful solution. Otherwise, it uses the suboptimal solution found during the last solver
iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its objectives. For more information, see “Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible', or when QPCode = 'feasible'
and MPCobj.Optimizer.UseSuboptimalSolution is true.

Tips
• Use the Multiple MPC Controllers Simulink block for simulations and code generation.

See Also
generateExplicitMPC | mpcmove | mpcstate | review | sim | setEstimator | getEstimator

Introduced in R2014b

2 Functions

2-140

mpcprops
Provide help on MPC controller properties

Syntax
mpcprops

Description
mpcprops displays details on the generic properties of MPC controllers. It provides a complete list of
all the fields of MPC objects with a brief description of each field and the corresponding default
values.

Examples

Describe properties of MPC objects

Display all fields of MPC objects, with related explanation.

 MPC controller properties (with Ny output variables
 Nu manipulated variables, a prediction horizon of p intervals,
 and control horizon of m intervals):

 Model -
 A structure consisting of plant,
 disturbance and noise models and their nominal values.
 Model.Plant -
 Plant model
 (LTI or linear model from System Identification Toolbox).
 Default: none, must be specified.

 Model.Disturbance -
 Model describing unmeasured input disturbances. Must be
 an LTI or linear model from System Identification Toolbox.
 Default: integrator (models step disturbance).
 See also: "getindist" and "setindist" commands.
 Model.Noise -
 Model describing added output measurement noise. Must be
 an LTI or linear model from System Identification Toolbox.
 Default: unity gain (models white noise).
 Model.Nominal -
 Structure containing nominal state, input,
 and output variable values:
 Model.Nominal.X -
 State of Model.Plant at the operating point.
 Model.Nominal.U -
 Input of Model.Plant at the operating point.
 Model.Nominal.Y -
 Output of Model.Plant at the operating point.
 Model.Nominal.DX -
 State derivative (for continuous time models) or update

 mpcprops

2-141

 (for discrete time models) at the operating point.
 Default: all nominal values set to zero.

 Define input signal types in Model.Plant.InputGroup:
 ManipulatedVariables (or MV or Manipulated or Input) -
 Indices of manipulated variables.
 UnmeasuredDisturbances (or UD or Unmeasured) -
 Indices of unmeasured disturbances.
 MeasuredDisturbances (or MD or Measured) -
 Indices of measured disturbances.
 By default, all the plant inputs are manipulated variables.
 See also: the "setmpcsignals" command.

 Define output signal types in Model.Plant.OutputGroup:
 MeasuredOutputs (or MO or Measured) -
 Indices of measured outputs.
 UnmeasuredOutputs (or UO or Unmeasured) -
 Indices of unmeasured outputs.
 By default, all the plant outputs are measured outputs.
 See also: the "setmpcsignals" command.

 Ts -
 Sample time of the MPC controller
 (in the same time units as Model.Plant).
 Default: if Model.Plant.Ts > 0, MPC.Ts = Model.Plant.Ts;
 otherwise, MPC.Ts must be specified.

 PredictionHorizon -
 Intervals in the prediction horizon (scalar)
 Default: 10 + max intervals of delay in Model.Plant

 ControlHorizon -
 Intervals in the control horizon.
 Either a scalar or a vector of blocked moves.
 Default: 2

 Weights -
 A structure defining dimensionless
 MPC weights with the following fields:
 Weights.ManipulatedVariables
 (or MV or Manipulated or Input) -
 Must be a (min 1, max p) x Nu matrix of weights
 on the manipulated variables.
 Default: zeros(1,Nu)
 Weights.ManipulatedVariablesRate
 (or MVRate or ManipulatedRate or InputRate) -
 Must be a (min 1, max p) x Nu matrix of weights on the rates
 of the manipulated variables. MV Rates are defined as the
 differences between current and ptrevious MV values.
 Default: 0.1*ones(1,Nu)
 Weights.OutputVariables (or OV or Output) -
 Must be a (min 1, max p) x Ny matrix of weights
 on the plant outputs.
 Default: if Ny<=Nu, ones(1,Ny); otherwise,
 only Nu outputs are weighted,
 with preference on measured outputs.
 Weights.ECR - Scalar weight on the slack variable
 Equal Concern for Relaxation, used for constraint softening.

2 Functions

2-142

 Default: 1e5*max(Weights)

 Alternative weighting:
 This syntax allows for off-diagonal weights, but requires the
 weights to be identical at each prediction horizon step.
 Using this syntax, Weights.MV={R}, where R is a Nu x Nu
 symmetric and positive semi-definite matrix,
 which must be constant over the prediction horizon.
 The syntax for Weights.MVRate and Weights.OV is similar.

 ManipulatedVariables (or MV or Manipulated or Input) -
 Array of structures with fields:
 MV(i).Min -
 1 to p dimensional vector of lower bounds on MV #i
 Ddefault: -Inf
 .Max -
 1 to P dimensional vector of upper bounds on MV #i
 Default: Inf
 .MinECR -
 1 to p dimensional vector of weights for softening the
 lower bounds on MV #i
 Default: 0, (hard constraint).
 .MaxECR -
 1 to p dimensional vector of weights for softening the
 upper bounds on MV #i
 Default: 0, (hard constraint).
 .RateMin -
 1 to p dimensional vector of lower bounds on the rate of MV #i
 Default: -Inf
 .RateMax -
 1 to p dimensional vector of upper bounds on the rate of MV #i
 Default: Inf
 .MinECR -
 1 to p dimensional vector of weights for softening the
 lower bounds on the MV #i rate
 Default: 0, (hard constraint).
 .MaxECR -
 1 to p dimensional vector of weights for softening the
 upper bounds on the MV #i rate
 Default: 0, (hard constraint).
 .Target -
 1 to p dimensional vector of target values for MV #i
 Default: Model.Nominal.U
 .Name -
 Name of MV #i
 Default: from Model.Plant.InputName
 .Units -
 String specifying the engineering units for MV #i
 .ScaleFactor -
 A scalar in engineering units.
 Each MV will be divided by its scale factor to form the
 dimensionless signal used in the MPC computations.
 Default: 1
 .Type -
 Type of variable MV #i (default: 'continuous').
 Type can be 'continuous', 'binary', 'integer',
 or an array containing all the values MV #i can take.

 mpcprops

2-143

 OutputVariables (or OV or Controlled or Output) -
 Array of structures with fields:
 OV(i).Min -
 1 to p dimensional vector of lower bounds on OV #i.
 Default: -Inf
 .Max -
 1 to p dimensional vector of upper bounds on OV #i.
 Default: Inf
 .MinECR -
 1 to p dimensional vector of weights for softening the
 lower bounds on OV #i.
 Default: 1, (soft constraint).
 .MaxECR -
 1 to p dimensional vector of weights for softening the
 upper bounds on OV #i.
 Default: 1, (soft constraint).
 .Name -
 Name of OV #i (default: Model.Plant.OutputName{i})
 .Units -
 String specifying the engineering units for OV #i
 .ScaleFactor -
 A scalar in engineering units.
 Each OV will be divided by its scale factor to form the
 dimensionless signal used in the MPC computations.
 Default: 1

 DisturbanceVariables (or DV or Disturbance) -
 Array of structures with fields:
 DV(i).Name -
 Name of DV #i (default: from Model.Plant.InputName).
 .Units -
 String specifying the engineering units for DV #i
 .ScaleFactor -
 A scalar in engineering units.
 Each DV will be divided by its scale factor to form the
 dimensionless signal used in all the MPC computations.
 Default: 1
 Note: DV consists in all the measured disturbance inputs
 followed by all the unmeasured disturbance inputs.

 Optimizer -
 QP optimizer parameter structure with fields:
 Optimizer.Algorithm -
 Algorithm used by the solver.
 Default: 'active-set'
 Optimizer.ActiveSetOptions -
 Active-set solver options.
 Optimizer.InteriorPointOptions -
 Interior-point solver options.
 Optimizer.MixedIntegerOptions -
 Mixed-integer solver options.
 Optimizer.MinOutputECR -
 Minimum value of output MinECR and MaxECR.
 Default: 0
 Optimizer.UseSuboptimalSolution -
 If True the controller applies the sub-optimal solution
 when the maximum number of iterations is exceeded.
 Default: false.

2 Functions

2-144

 Optimizer.CustomSolver -
 If true the custom QP solver is used for simulation.
 Default: false.
 Optimizer.CustomSolverCodeGen -
 If true the custom QP solver is used for code generation.
 Default: false.

 Notes - User's notes.
 It can be a string or a cell array of strings.

 UserData - Additional information or data.
 It can be any MATLAB data type.

 History - Date and time of the MPC object creation.

 See the "mpc" command for construction syntax.

See Also
set | get

Introduced before R2006a

 mpcprops

2-145

mpcqpsolver
(To be removed) Solve a quadratic programming problem using the KWIK algorithm

Note mpcqpsolver will be removed in a future release. Use mpcActiveSetSolver instead. For
more information, see “Compatibility Considerations”.

Syntax
[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options)
[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options)

Description
[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options) finds an optimal solution, x,
to a quadratic programming problem by minimizing the objective function:

J = 1
2x⊺Hx + f⊺x

subject to inequality constraints Ax ≥ b, and equality constraints Aeqx = beq. status indicates the
validity of x.

[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options) also returns
the active inequalities, iA, at the solution, and the Lagrange multipliers, lambda, for the solution.

Examples

Solve Quadratic Programming Problem Using Active-Set Solver

Find the values of x that minimize

f x = 0 . 5x1
2 + x2

2− x1x2− 2x1− 6x2,

subject to the constraints

x1 ≥ 0
x2 ≥ 0
x1 + x2 ≤ 2
−x1 + 2x2 ≤ 2
2x1 + x2 ≤ 3 .

Specify the Hessian and linear multiplier vector for the objective function.

H = [1 -1; -1 2];
f = [-2; -6];

2 Functions

2-146

Specify the inequality constraint parameters.

A = [1 0; 0 1; -1 -1; 1 -2; -2 -1];
b = [0; 0; -2; -2; -3];

Define Aeq and beq to indicate that there are no equality constraints.

Aeq = [];
beq = zeros(0,1);

Find the lower-triangular Cholesky decomposition of H.

[L,p] = chol(H,'lower');
Linv = inv(L);

It is good practice to verify that H is positive definite by checking if p = 0.

p

p = 0

Create a default option set for mpcActiveSetSolver.

opt = mpcqpsolverOptions;

To cold start the solver, define all inequality constraints as inactive.

iA0 = false(size(b));

Solve the QP problem.

[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,opt);

Examine the solution, x.

x

x = 2×1

 0.6667
 1.3333

Check Active Inequality Constraints for QP Solution

Find the values of x that minimize

f x = 3x1
2 + 0 . 5x2

2− 2x1x2− 3x1 + 4x2,

subject to the constraints

x1 ≥ 0
x1 + x2 ≤ 5
x1 + 2x2 ≤ 7 .

Specify the Hessian and linear multiplier vector for the objective function.

 mpcqpsolver

2-147

H = [6 -2; -2 1];
f = [-3; 4];

Specify the inequality constraint parameters.

A = [1 0; -1 -1; -1 -2];
b = [0; -5; -7];

Define Aeq and beq to indicate that there are no equality constraints.

Aeq = [];
beq = zeros(0,1);

Find the lower-triangular Cholesky decomposition of H.

[L,p] = chol(H,'lower');
Linv = inv(L);

Verify that H is positive definite by checking if p = 0.

p

p = 0

Create a default option set for mpcqpsolver.

opt = mpcqpsolverOptions;

To cold start the solver, define all inequality constraints as inactive.

iA0 = false(size(b));

Solve the QP problem.

[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,opt);

Check the active inequality constraints. An active inequality constraint is at equality for the optimal
solution.

iA

iA = 3x1 logical array

 1
 0
 0

There is a single active inequality constraint.

View the Lagrange multiplier for this constraint.

lambda.ineqlin(1)

2 Functions

2-148

ans = 5.0000

Input Arguments
Linv — Inverse of lower-triangular Cholesky decomposition of Hessian matrix
n-by-n matrix

Inverse of lower-triangular Cholesky decomposition of Hessian matrix, specified as an n-by-n matrix,
where n > 0 is the number of optimization variables. For a given Hessian matrix, H, Linv can be
computed as follows:

[L,p] = chol(H,'lower');
Linv = inv(L);

H is an n-by-n matrix, which must be symmetric and positive definite. If p = 0, then H is positive
definite.

Note The KWIK algorithm requires the computation of Linv instead of using H directly, as in the
quadprog command.

f — Multiplier of objective function linear term
column vector

Multiplier of objective function linear term, specified as a column vector of length n.

A — Linear inequality constraint coefficients
m-by-n matrix | []

Linear inequality constraint coefficients, specified as an m-by-n matrix, where m is the number of
inequality constraints.

If your problem has no inequality constraints, use [].

b — Right-hand side of inequality constraints
column vector of length m

Right-hand side of inequality constraints, specified as a column vector of length m.

If your problem has no inequality constraints, use zeros(0,1).

Aeq — Linear equality constraint coefficients
q-by-n matrix | []

Linear equality constraint coefficients, specified as a q-by-n matrix, where q is the number of equality
constraints, and q <= n. Equality constraints must be linearly independent with rank(Aeq) = q.

If your problem has no equality constraints, use [].

beq — Right-hand side of equality constraints
column vector of length q

Right-hand side of equality constraints, specified as a column vector of length q.

If your problem has no equality constraints, use zeros(0,1).

 mpcqpsolver

2-149

iA0 — Initial active inequalities
logical vector of length m

Initial active inequalities, where the equal portion of the inequality is true, specified as a logical
vector of length m according to the following:

• If your problem has no inequality constraints, use false(0,1).
• For a cold start, false(m,1).
• For a warm start, set iA0(i) == true to start the algorithm with the ith inequality constraint

active. Use the optional output argument iA from a previous solution to specify iA0 in this way. If
both iA0(i) and iA0(j) are true, then rows i and j of A should be linearly independent.
Otherwise, the solution can fail with status = -2.

options — Option set for mpcqpsolver
structure

Option set for mpcqpsolver, specified as a structure created using mpcqpsolverOptions.

Output Arguments
x — Optimal solution to the QP problem
column vector

Optimal solution to the QP problem, returned as a column vector of length n. mpcqpsolver always
returns a value for x. To determine whether the solution is optimal or feasible, check the solution
status.

status — Solution validity indicator
positive integer | 0 | -1 | -2

Solution validity indicator, returned as an integer according to the following:

Value Description
> 0 x is optimal. status represents the number of iterations performed during optimization.
0 The maximum number of iterations was reached. The solution, x, may be suboptimal or

infeasible.
-1 The problem appears to be infeasible, that is, the constraint Ax ≥ b cannot be satisfied.
-2 An unrecoverable numerical error occurred.

iA — Active inequalities
logical vector of length m

Active inequalities, where the equal portion of the inequality is true, returned as a logical vector of
length m. If iA(i) == true, then the ith inequality is active for the solution x.

Use iA to warm start a subsequent mpcqpsolver solution.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields:

2 Functions

2-150

Field Description
ineqlin Multipliers of the inequality constraints, returned as a vector of length n. When the

solution is optimal, the elements of ineqlin are nonnegative.
eqlin Multipliers of the equality constraints, returned as a vector of length q. There are no sign

restrictions in the optimal solution.

Tips
• The KWIK algorithm requires that the Hessian matrix, H, be positive definite. When calculating

Linv, use:

[L, p] = chol(H,'lower');

If p = 0, then H is positive definite. Otherwise, p is a positive integer.
• mpcqpsolver provides access to the QP solver used by Model Predictive Control Toolbox

software. Use this command to solve QP problems in your own custom MPC applications.

Algorithms
mpcqpsolver solves the QP problem using an active-set method, the KWIK algorithm, based on [1].
For more information, see “QP Solvers”.

Compatibility Considerations
mpcqpsolver will be removed
Warns starting in R2020a

mpcqpsolver will be removed in a future release. Use mpcActiveSetSolver instead. There are
differences between these functions that require updates to your code.
Update Code

The following differences require updates to your code:

• For mpcActiveSetSolver, you define inequality constraints in the form Ax≤b. Previously, for
mpcqpsolver, you defined inequality constraints in the form Ax≥b

• For mpcActiveSetSolver, you specify solver options with a structure created using the
mpcActiveSetOptions function. Previously, for mpcqpsolver, you created an option structure
using the mpcqpsolverOptions function. These option structures contain the same options,
though some option names have changed.

• By default, you pass the Hessian matrix to mpcActiveSetSolver. Previously, you passed the
inverse of lower-triangular Cholesky decomposition (Linv) of the Hessian matrix to
mpcqpsolver. To continue to use Linv, set the UseHessianAsInput field of the structure
returned by mpcActiveSetSolver to false.

• When your QP problem has either no inequality constraints or no equality constraints, the
corresponding A or Aeq input argument to mpcActiveSetSolver must be zeros(0,n), where n
is the number of decision variables. Previously, for mpcqpsolver, you specified these input
arguments as [].

This table shows some typical usages of mpcqpsolver and how to update your code to use
mpcActiveSetSolver instead.

 mpcqpsolver

2-151

Not Recommended Recommended
opt = mpcqpsolverOptions;
[x,status] = mpcqpsolver(Linv,f,A,b,...
 Aeq,beq,iA0,opt);

opt = mpcActiveSetOptions;
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,Aeq,beq,iA0,opt);

Alternatively, you can use the Hessian matrix, H.

opt = mpcActiveSetOptions;
[x,status] = mpcActiveSetSolver(H,f,...
 -A,-b,Aeq,beq,iA0,opt);

opt = mpcqpsolverOptions('single');
[x,status] = mpcqpsolver(Linv,f,A,b,...
 Aeq,beq,iA0,opt);

opt = mpcActiveSetOptions('single');
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,Aeq,beq,iA0,opt);

opt = mpcqpsolverOptions;
opt.MaxIter = 300;
opt.FeasibilityTol = 1e-5;
[x,status] = mpcqpsolver(Linv,f,A,b,...
 Aeq,beq,iA0,opt);

opt = mpcActiveSetOptions;
opt.UseHessianAsInput = false;
opt.MaxIterations = 300;
opt.ContraintTolerance = 1e-5;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,Aeq,beq,iA0,opt);

[x,status] = mpcqpsolver(Linv,f,[],...
 zeros(0,1),Aeq,beq,iA0,opt);

n = length(f);
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 zeros(0,n),zeros(0,1),Aeq,beq,iA0,opt);

[x,status] = mpcqpsolver(Linv,f,A,b,...
 [],zeros(0,1),iA0,opt);

n = length(f);
opt.UseHessianAsInput = false;
[x,status] = mpcActiveSetSolver(Linv,f,...
 -A,-b,zeros(0,n),zeros(0,1),iA0,opt);

References
[1] Schmid, C., and L.T. Biegler. ‘Quadratic Programming Methods for Reduced Hessian SQP’.

Computers & Chemical Engineering 18, no. 9 (September 1994): 817–32. https://doi.org/
10.1016/0098-1354(94)E0001-4.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• You can use mpcqpsolver as a general-purpose QP solver that supports code generation. Create
the function myCode that uses mpcqpsolver.

function [out1,out2] = myCode(in1,in2)
%#codegen
...
[x,status] = mpcqpsolver(Linv,f,A,b,Aeq,Beq,iA0,options);
...

Generate C code with MATLAB Coder.

2 Functions

2-152

func = 'myCode';
cfg = coder.config('mex'); % or 'lib', 'dll'
codegen('-config',cfg,func,'-o',func);

• For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double' or 'single' using mpcqpsolverOptions.

See Also
mpcqpsolverOptions | mpcActiveSetSolver | mpcActiveSetOptions

Topics
“QP Solvers”

Introduced in R2015b

 mpcqpsolver

2-153

mpcqpsolverOptions
(To be removed) Create default option set for mpcqpsolver

Note mpcqpsolverOptions will be removed in a future release. Use mpcActiveSetOptions
instead. For more information, see “Compatibility Considerations”.

Syntax
options = mpcqpsolverOptions
options = mpcqpsolverOptions(type)

Description
options = mpcqpsolverOptions creates a structure of default options for mpcqpsolver, which
solves a quadratic programming (QP) problem using the KWIK algorithm.

options = mpcqpsolverOptions(type) creates a default option set using the specified input
data type. All real options are specified using this data type.

Examples

Create Default Option Set for MPC QP Solver

opt = mpcqpsolverOptions;

Create and Modify Default MPC QP Solver Option Set

Create default option set.

opt = mpcqpsolverOptions;

Specify the maximum number of iterations allowed during computation.

opt.MaxIter = 100;

Specify a feasibility tolerance for verifying that the optimal solution satisfies the inequality
constraints.

opt.FeasibilityTol = 1.0e-3;

2 Functions

2-154

Create Option Set Specifying Input Argument Type

opt = mpcqpsolverOptions('single');

Input Arguments
type — MPC QP solver input argument data type
'double' (default) | 'single'

MPC QP solver input argument data type, specified as either 'double' or 'single'. This data type
is used for both simulation and code generation. All real options in the option set are specified using
this data type, and all real input arguments to mpcqpsolver must match this type.

Output Arguments
options — Option set for mpcqpsolver
structure

Option set for mpcqpsolver, returned as a structure with the following fields:

Field Description Default
DataType Input argument data type, specified as either 'double' or 'single'. This

data type is used for both simulation and code generation, and all real input
arguments to mpcqpsolver must match this type.

'double'

MaxIter Maximum number of iterations allowed when computing the QP solution,
specified as a positive integer.

200

Feasibil
ityTol

Tolerance used to verify that inequality constraints are satisfied by the
optimal solution, specified as a positive scalar. A larger FeasibilityTol
value allows for larger constraint violations.

1.0e-6

Integrit
yChecks

Indicator of whether integrity checks are performed on the mpcqpsolver
input data, specified as a logical value. If IntegrityChecks is true, then
integrity checks are performed and diagnostic messages are displayed. Use
false for code generation only.

true

Compatibility Considerations
mpcqpsolverOptions will be removed
Warns starting in R2020a

mpcqpsolverOptions will be removed in a future release. Use mpcActiveSetOptions instead.
There are differences between these functions that require updates to your code.

Update Code

To update your code:

• Change the function name from mpcqpsolverOptions to mpcActiveSetOptions. The syntaxes
are equivalent.

• Some field names of the returned structure have changed. The default field values are the same.
This table shows the new property names.

 mpcqpsolverOptions

2-155

Previous Property Name New Property Name
MaxIter MaxIterations
FeasibilityTol ConstraintTolerance

• The returned structure of mpcActiveSetOptions contains the new field UseHessianAsInput.
To continue to use the inverse of the lower-triangular decomposition of the Hessian matrix with
mpcActiveSetSolver, you must set UseHessianAsInput to false.

For syntax examples showing how to update your code, see mpcqpsolver.

See Also
mpcqpsolver | mpcActiveSetSolver | mpcActiveSetOptions

Introduced in R2015b

2 Functions

2-156

mpcverbosity
Change toolbox verbosity level

Syntax
mpcverbosity on
mpcverbosity off
old_status = mpcverbosity(new_status)
mpcverbosity

Description
mpcverbosity on enables messages displaying default operations taken by Model Predictive
Control Toolbox software during the creation and manipulation of model predictive control objects.

By default, messages are turned on.

mpcverbosity off turns messages off.

old_status = mpcverbosity(new_status) sets the verbosity level to the specified value,
new_status. The function returns the original value of the verbosity level as old_status. Specify
new_status as either 'on' or 'off' .

mpcverbosity shows the verbosity status.

Examples

Turn MPC verbosity off

Turn verbosity off and suppress output argument.

mpcverbosity off;

Turn MPC verbosity on

Turn verbosity on and save the old status in the workspace variable old

old = mpcverbosity on;

Show MPC verbosity status

Show MPC verbosity and suppress output argument.

 mpcverbosity

2-157

mpcverbosity;
MPC verbosity is off

Input Arguments
new_status — new MPC verbosity status
'on' (default) | 'off'

Char array, being either 'on' or 'off' .
Example: 'off'

Output Arguments
old_status — old MPC verbosity status
'on' (default) | 'off'

Char array, being either 'on' or 'off' .
Example: 'off'

See Also
mpc

Introduced before R2006a

2 Functions

2-158

nlmpcmove
Compute optimal control action for nonlinear MPC controller

Syntax
mv = nlmpcmove(nlmpcobj,x,lastmv)
mv = nlmpcmove(nlmpcobj,x,lastmv,ref)
mv = nlmpcmove(nlmpcobj,x,lastmv,ref,md)
mv = nlmpcmove(nlmpcobj,x,lastmv,ref,md,options)
[mv,opt] = nlmpcmove(___)
[mv,opt,info] = nlmpcmove(___)

mv = nlmpcmove(nlmpcMSobj,x,lastmv)
mv = nlmpcmove(nlmpcobj,x,lastmv,simdata)
[mv,simdata] = nlmpcmove(___)
[mv,simdata,info] = nlmpcmove(___)

Description
Nonlinear MPC

mv = nlmpcmove(nlmpcobj,x,lastmv) computes the optimal control action for the current time.
To simulate closed-loop nonlinear MPC control, call nlmpcmove repeatedly.

mv = nlmpcmove(nlmpcobj,x,lastmv,ref) specifies reference values for the plant outputs. If
you do not specify reference values, nlmpcmove uses zeros by default.

mv = nlmpcmove(nlmpcobj,x,lastmv,ref,md) specifies run-time measured disturbance values.
If your controller has measured disturbances, you must specify md.

mv = nlmpcmove(nlmpcobj,x,lastmv,ref,md,options) specifies additional run-time options
for computing optimal control moves. Using options, you can specify initial guesses for state and
manipulated variable trajectories, update tuning weights at constraints, or modify prediction model
parameters.

[mv,opt] = nlmpcmove(___) returns an nlmpcmoveopt object that contains initial guesses for
the state and manipulated trajectories to be used in the next control interval.

[mv,opt,info] = nlmpcmove(___) returns additional solution details, including the final
optimization cost function value and the optimal manipulated variable, state, and output trajectories.

Multistage Nonlinear MPC

mv = nlmpcmove(nlmpcMSobj,x,lastmv) computes the optimal control action for the current
time. To simulate closed-loop nonlinear MPC control, call nlmpcmove repeatedly.

mv = nlmpcmove(nlmpcobj,x,lastmv,simdata) specifies the additional simdata structure,
which contains measured disturbances, run-time bounds, parameters for the state and stage
functions, and initial guesses for state and manipulated variable trajectories. In general use the
following syntax to return a new simdata (containing updated initial guesses) as a second output
argument.

 nlmpcmove

2-159

[mv,simdata] = nlmpcmove(___) returns an updated simdata structure that contains new
initial guesses for the state and manipulated trajectories to be used in the next control interval. Good
initial guesses are important since they help the solver to converge to a solution faster.

[mv,simdata,info] = nlmpcmove(___) returns additional solution details, including the final
optimization cost function value and the optimal manipulated variable, state, and output trajectories.

Examples

Plan Optimal Trajectory Using Nonlinear MPC

Create a nonlinear MPC controller with six states, six outputs, and four inputs.

nx = 6;
ny = 6;
nu = 4;
nlobj = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the controller sample time and horizons.

Ts = 0.4;
p = 30;
c = 4;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;
nlobj.ControlHorizon = c;

Specify the prediction model state function and the Jacobian of the state function. For this example,
use a model of a flying robot.

nlobj.Model.StateFcn = "FlyingRobotStateFcn";
nlobj.Jacobian.StateFcn = "FlyingRobotStateJacobianFcn";

Specify a custom cost function for the controller that replaces the standard cost function.

nlobj.Optimization.CustomCostFcn = @(X,U,e,data) Ts*sum(sum(U(1:p,:)));
nlobj.Optimization.ReplaceStandardCost = true;

Specify a custom constraint function for the controller.

nlobj.Optimization.CustomEqConFcn = @(X,U,data) X(end,:)';

Specify linear constraints on the manipulated variables.

for ct = 1:nu
 nlobj.MV(ct).Min = 0;
 nlobj.MV(ct).Max = 1;
end

Validate the prediction model and custom functions at the initial states (x0) and initial inputs (u0) of
the robot.

x0 = [-10;-10;pi/2;0;0;0];
u0 = zeros(nu,1);
validateFcns(nlobj,x0,u0);

2 Functions

2-160

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Compute the optimal state and manipulated variable trajectories, which are returned in the info.

[~,~,info] = nlmpcmove(nlobj,x0,u0);

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Plot the optimal trajectories.

FlyingRobotPlotPlanning(info,Ts)

Optimal fuel consumption = 1.884953

 nlmpcmove

2-161

2 Functions

2-162

Simulate Closed-Loop Control using Nonlinear MPC Controller

Create a nonlinear MPC controller with four states, two outputs, and one input.

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter, Ts, to represent the sample time. Specify the
number of parameters.

 nlmpcmove

2-163

nlobj.Model.NumberOfParameters = 1;

Specify the output function of the model, passing the sample time parameter as an input argument.

nlobj.Model.OutputFcn = @(x,u,Ts) [x(1); x(3)];

Define standard constraints for the controller.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;
nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

Validate the prediction model functions.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj, x0, u0, [], {Ts});

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Only two of the plant states are measurable. Therefore, create an extended Kalman filter for
estimating the four plant states. Its state transition function is defined in pendulumStateFcn.m and
its measurement function is defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn,@pendulumMeasurementFcn);

Define initial conditions for the simulation, initialize the extended Kalman filter state, and specify a
zero initial manipulated variable value.

x = [0;0;-pi;0];
y = [x(1);x(3)];
EKF.State = x;
mv = 0;

Specify the output reference value.

yref = [0 0];

Create an nlmpcmoveopt object, and specify the sample time parameter.

nloptions = nlmpcmoveopt;
nloptions.Parameters = {Ts};

Run the simulation for 10 seconds. During each control interval:

1 Correct the previous prediction using the current measurement.
2 Compute optimal control moves using nlmpcmove. This function returns the computed optimal

sequences in nloptions. Passing the updated options object to nlmpcmove in the next control
interval provides initial guesses for the optimal sequences.

3 Predict the model states.
4 Apply the first computed optimal control move to the plant, updating the plant states.

2 Functions

2-164

5 Generate sensor data with white noise.
6 Save the plant states.

Duration = 10;
xHistory = x;
for ct = 1:(Duration/Ts)
 % Correct previous prediction
 xk = correct(EKF,y);
 % Compute optimal control moves
 [mv,nloptions] = nlmpcmove(nlobj,xk,mv,yref,[],nloptions);
 % Predict prediction model states for the next iteration
 predict(EKF,[mv; Ts]);
 % Implement first optimal control move
 x = pendulumDT0(x,mv,Ts);
 % Generate sensor data
 y = x([1 3]) + randn(2,1)*0.01;
 % Save plant states
 xHistory = [xHistory x];
end

Plot the resulting state trajectories.

figure
subplot(2,2,1)
plot(0:Ts:Duration,xHistory(1,:))
xlabel('time')
ylabel('z')
title('cart position')
subplot(2,2,2)
plot(0:Ts:Duration,xHistory(2,:))
xlabel('time')
ylabel('zdot')
title('cart velocity')
subplot(2,2,3)
plot(0:Ts:Duration,xHistory(3,:))
xlabel('time')
ylabel('theta')
title('pendulum angle')
subplot(2,2,4)
plot(0:Ts:Duration,xHistory(4,:))
xlabel('time')
ylabel('thetadot')
title('pendulum velocity')

 nlmpcmove

2-165

Create and Simulate Multistage Nonlinear MPC Controller

This example shows how to create and simulate a simple multistage MPC controller in closed loop,
without using initial guesses, with the MATLAB® function nlmpcmove.

Create Multistage MPC Controller

Create a multistage nonlinear MPC object with a five-step horizon, one state, and one manipulated
variable.

nlmsobj = nlmpcMultistage(5,1,1);

Specify the state transition function for the prediction model (mystatefcn is defined at the end of
this example).

nlmsobj.Model.StateFcn = @mystatefcn;

Specify the cost functions for last three stages (mycostfcn is defined at the end of the file).

for i=3:6
 nlmsobj.Stages(i).CostFcn = @mycostfcn;
end

Note that, because the Jacobian of the state function is not supplied here, nlmpcmove needs to
numerically calculate them at each time step, which negatively affects performance. As a best

2 Functions

2-166

practice, supply the Jacobian of the state function, as shown in “Simulate Multistage Nonlinear MPC
Controller Using Initial Guesses” on page 2-167.

Simulate Controller in Closed Loop

Initialize the plant state and input.

x=3;
mv=0;

Validate functions.

validateFcns(nlmsobj,x,mv);

Model.StateFcn is OK.
"CostFcn" of the following stages [3 4 5 6] are OK.
Analysis of user-provided model, cost, and constraint functions complete.

Simulate the control loop for 5 steps, without updating the initial guess. Use the Euler method
(dx(t)/dt ~ (x(t+1)-x(t))/Ts) to simulate the plant.

for k=1:5
 mv = nlmpcmove(nlmsobj, x, mv); % calculate move (without initial guess)
 x=x+0.2*mystatefcn(x,mv); % update plant state assuming Ts=0.2s
end

Note that, because initial guesses are not supplied as an input argument, nlmpcmove needs to
recalculate them at each time step, which negatively affects performance. Not supplying initial
guesses can be an acceptable starting point, but in general is not suggested. As a best practice, use
updated initial guesses at each time step, as shown in “Simulate Multistage Nonlinear MPC
Controller Using Initial Guesses” on page 2-167, so that nlmpcmove does not need to recalculate
them at each time step (in the same example you also use ode45 to calculate the evolution of the
plant state until the next control interval).

Display the final values of the state and manipulated variables.

disp(['Final value of x =' num2str(x)])

Final value of x =1.3074

disp(['Final value of mv =' num2str(mv)])

Final value of mv =-0.35101

Support Functions

State transition function.

function xdot = mystatefcn(x,u)
 xdot = u-sin(x);
end

Stage cost functions.

function j = mycostfcn(s,x,u)
 j = abs(u)/s+s*x^2;
end

 nlmpcmove

2-167

Simulate Multistage Nonlinear MPC Controller Using Initial Guesses

This example shows how to create and simulate a simple multistage MPC controller in closed loop
using initial guesses, with the MATLAB® function nlmpcmove.

Create Multistage MPC Controller

Create a multistage MPC object with a seven-steps horizon, one state, and one manipulated variable.

nlmsobj = nlmpcMultistage(7,1,1);

Specify the state transition function for the prediction model (mystatefcn is defined at the end of
this example).

nlmsobj.Model.StateFcn = @mystatefcn;

As a best practice, use Jacobians whenever they are available, otherwise the solver must compute it
numerically.

Specify the Jacobian of the state transition function (mystatejacobian is defined at the end of the
file).

nlmsobj.Model.StateJacFcn = @mystatejac;

Specify the cost functions for all stages except the first (mycostfcn is defined at the end of the file).

for i=2:8
 nlmsobj.Stages(i).CostFcn = @mycostfcn;
end

Define Initial Conditions, Create Data Structure, and Validate Functions

Initialize the plant state and input.

x=3;
mv=0;

Create the initial simulation data structure.

simdata = getSimulationData(nlmsobj)

simdata = struct with fields:
 InitialGuess: []

Validate functions and the data structure.

validateFcns(nlmsobj,x,mv,simdata);

Model.StateFcn is OK.
Model.StateJacFcn is OK.
"CostFcn" of the following stages [2 3 4 5 6 7 8] are OK.
Analysis of user-provided model, cost, and constraint functions complete.

Simulate Controller in Closed Loop

Simulate the control loop for 5 steps.

for k=1:5
 [mv,simdata] = nlmpcmove(nlmsobj, x, mv, simdata); % calculate move and update simdata

2 Functions

2-168

 [~,xhist] = ode45(@(t,xode) mystatefcn(xode,mv),[0 nlmsobj.Ts],x); % simulate plant for one sample time
 x = xhist(end); % update plant state
end

Since updated initial guesses are supplied as an input argument within the simdata structure,
nlmpcmove does not need to recalculate them at each time step, which saves computation time and
improves performance. Updating initial guesses at every time step is a best practice.

Display the last values of the state and manipulated variables.

disp(['Final value of x =' num2str(x)])

Final value of x =-0.039545

disp(['Final value of mv =' num2str(mv)])

Final value of mv =-0.066672

Support Functions

State transition function.

function xdot = mystatefcn(x,u)
 xdot = u-sin(x);
end

Jacobian of the state transition function.

function [A,B] = mystatejac(x,~)
 A = -cos(x);
 B = 1;
end

Stage cost functions.

function j = mycostfcn(s,x,u)
 j = abs(u)/s+s*x^2;
end

Input Arguments
nlmpcobj — Nonlinear MPC controller
nlmpc object

Nonlinear MPC controller, specified as an nlmpc object.

x — Current prediction model states
vector

Current prediction model states, specified as a vector of lengthNx, where Nx is the number of
prediction model states. Since the nonlinear MPC controller does not perform state estimation, you
must either measure or estimate the current prediction model states at each control interval. For
more information on nonlinear MPC prediction models, see “Specify Prediction Model for Nonlinear
MPC”.

lastmv — Control signals used in plant at previous control interval
vector

 nlmpcmove

2-169

Control signals used in plant at previous control interval, specified as a vector of lengthNmv, where
Nmv is the number of manipulated variables.

Note Specify lastmv as the manipulated variable signals applied to the plant in the previous control
interval. Typically, these signals are the values generated by the controller, though this is not always
the case. For example, if your controller is offline and running in tracking mode; that is, the controller
output is not driving the plant, then feeding the actual control signal to last_mv can help achieve
bumpless transfer when the controller is switched back online.

ref — Plant output reference values
[] (default) | row vector | array

Plant output reference values, specified as a row vector of length Ny or an array with Ny columns,
where Ny is the number of output variables. If you do not specify ref, the default reference values
are zero.

To use the same reference values across the prediction horizon, specify a row vector.

To vary the reference values over the prediction horizon from time k+1 to time k+p, specify an array
with up to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the
reference values for one prediction horizon step. If you specify fewer than p rows, the values in the
final row are used for the remaining steps of the prediction horizon.

md — Measured disturbance values
[] (default) | row vector | array

Measured disturbance values, specified as a row vector of length Nmd or an array with Nmd columns,
where Nmd is the number of measured disturbances. If your controller has measured disturbances,
you must specify md. If your controller has no measured disturbances, specify md as [].

To use the same disturbance values across the prediction horizon, specify a row vector.

To vary the disturbance values over the prediction horizon from time k to time k+p, specify an array
with up to p+1 rows. Here, k is the current time and p is the prediction horizon. Each row contains
the disturbance values for one prediction horizon step. If you specify fewer than p rows, the values in
the final row are used for the remaining steps of the prediction horizon.

options — Run-time options
nlmpcmoveopt object

Run-time options, specified as an nlmpcmoveopt object. Using these options, you can:

• Tune controller weights
• Update linear constraints
• Set manipulated variable targets
• Specify prediction model parameters
• Provide initial guesses for state and manipulated variable trajectories

These options apply to only the current nlmpcmove time instant.

To improve solver efficiency, it is best practice to specify initial guesses for the state and manipulated
variable trajectories.

2 Functions

2-170

nlmpcMSobj — Nonlinear Multistage MPC controller
nlmpcMultistage object

Multistage nonlinear MPC controller, specified as an nlmpcMultistage object.

simdata — Run-time simulation data
structure

Run-time simulation data, specified as structure. It must be initially created by
getSimulationData, and then populated (if needed) before being passed to nlmpcmove as an input
argument. An updated version is then always returned as a second output argument of nlmpcmove.
Note that the MVMin, MVMax, StateMin, StateMax, MVRateMin, MVRateMax fields are needed only
if you want to change these bounds at run time. These fields exist in the structure returned by
getSimulationData only if you enable them explicitly when calling getSimulationData. The
simdata structure has the following fields.

MeasuredDisturbance — Measured disturbance values
[] (default) | row vector | array

Measured disturbance values, specified as a row vector of length Nmd or an array with Nmd columns,
where Nmd is the number of measured disturbances. If your multistage MPC object has any measured
disturbance channel defined, you must specify MeasuredDisturbance. If your controller has no
measured disturbances, this field does not exist in the structure generated by getSimulationData.

To use the same disturbance values across the prediction horizon, specify a row vector.

To vary the disturbance values over the prediction horizon from time k to time k+p, specify an array
with up to p+1 rows. Here, k is the current time and p is the prediction horizon. Each row contains
the disturbance values for one prediction horizon step. If you specify fewer than p rows, the values in
the final row are used for the remaining steps of the prediction horizon.

MVMin — Manipulated variable lower bounds
[] (default) | row vector | matrix

Manipulated variable lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMin(:,i) replaces the
ManipulatedVariables(i).Min property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVMax — Manipulated variable upper bounds
[] (default) | row vector | matrix

Manipulated variable upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMax(:,i) replaces the
ManipulatedVariables(i).Max property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for

 nlmpcmove

2-171

one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMin — Manipulated variable rate lower bounds
[] (default) | row vector | matrix

Manipulated variable rate lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMin(:,i) replaces the
ManipulatedVariables(i).RateMin property of the controller at run time. MVRateMin bounds
must be nonpositive.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMax — Manipulated variable rate upper bounds
[] (default) | row vector | matrix

Manipulated variable rate upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMax(:,i) replaces the
ManipulatedVariables(i).RateMax property of the controller at run time. MVRateMax bounds
must be nonnegative.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateMin — State lower bounds
[] (default) | row vector | matrix

State lower bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMin(:,i) replaces the States(i).Min property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateMax — State upper bounds
[] (default) | row vector | matrix

State upper bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMax(:,i) replaces the States(i).Max property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

2 Functions

2-172

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateFcnParameters — State function parameter values
[] (default) | vector

State function parameter values, specified as a vector with length equal to the value of the
Model.ParameterLength property of the multistage controller object. If Model.StateFcn needs a
parameter vector, you must provide its value at runtime using this field. If Model.ParameterLength
is 0 this field does not exist in the structure returned by getSimulationData.

StageFcnParameters — Stage function parameter values
[] (default) | vector

Stage functions parameter values, specified as a vector with length equal to the sum of all the values
in the Stages(i).ParameterLength properties of the multistage controller object. If any cost or
constraint function defined in the Stages property needs a parameter vector, you must provide all
the parameter vectors at runtime (stacked in a single column) using this field. If none of your stage
functions have parameters, this field does not exist in the structure returned by
getSimulationData.

You must stack the parameter vectors for all stages in the column vector StateFcnParameters as
follows.

[parameter vector for stage 1;
 parameter vector for stage 2;
 ...
 parameter vector for stage p+1;
]

TerminalState — Terminal state
[] (default) | vector

Terminal state, specified as a column vector with as many elements as the number of states. The
terminal state is the desired state at the last prediction step. To specify desired terminal states at run-
time via this field, you must specify finite values in the TerminalState field of the Model property
of nlmpcMSobj. Specify inf for the states that do not need to be constrained to a terminal value. At
run time, nlmpcmove ignores any values in the TerminalState field of simdata that correspond to
inf values in nlmpcMSobj. If you do not specify any terminal value condition in nlmpcMSobj, this
field is not created in simdata.

If there is no TerminalState in simdata then the terminal state constraint (if present) does not
change at run time.

InitialGuess — Initial guesses for the decision variables
[] (default) | vector

Initial guesses for the decision variables, specified as a column vector of length equal to the sum of
the lengths of all the decision variable vectors for each stage. Good initial guesses are important
since they help the solver to converge to a solution faster. Therefore, when simulating a control loop
by calling nlmpcmove repeatedly in a loop, pass simdata as an input argument (so initial guesses
can be used), and at the same time return an updated version of simdata (with new initial guesses
for the next control interval) as an output argument.

 nlmpcmove

2-173

You must be stack the initial guesses for all stages in the column vector InitialGuess as follows.

[state vector guess for stage 1;
 manipulated variable vector guess for stage 1;
 manipulated variable vector rate guess for stage 1; % if used
 slack variable vector guess for stage 1; % if used
 state vector guess for stage 2;
 manipulated variable vector guess for stage 2;
 manipulated variable vector rate guess for stage 2; % if used
 slack variable vector guess for stage 2; % if used
 ...
 state vector guess for stage p;
 manipulated variable vector guess for stage p;
 manipulated variable vector rate guess for stage p; % if used
 slack variable vector guess for stage p; % if used
 state vector guess for stage p+1;
 slack variable vector guess for stage p+1; % if used
]

If InitialGuess is [], the default initial guesses are calculated from the x and lastmv arguments
passed to nlmpcmove.

In general, during closed-loop simulation, you do not specify InitialGuess yourself. Instead, when
calling nlmpcmove, return the simdata output argument, which contains the calculated initial
guesses for the next control interval. You can then pass simdata as an input argument to
nlmpcmove for the next control interval. These steps are a best practice, even if you do not specify
any other run-time options.

Output Arguments
mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, returned as a column vector of length Nmv, where Nmv is
the number of manipulated variables.

If the solver converges to a local optimum solution (info.ExitFlag is positive), then mv contains
the optimal solution.

If the solver reaches the maximum number of iterations without finding an optimal solution
(info.ExitFlag = 0) and:

• nlmpcobj.Optimization.UseSuboptimalSolution is true, then mv contains the suboptimal
solution

• nlmpcobj.Optimization.UseSuboptimalSolution is false, then mv contains lastmv

If the solver fails (info.ExitFlag is negative), then mv contains lastmv.

opt — Run-time options with initial guesses
nlmpcmoveopt object

Run-time options with initial guesses for the state and manipulated variable trajectories to be used in
the next control interval, returned as an nlmpcmoveopt object. Any run-time options that you
specified using options, such as weights, constraints, or parameters, are copied to opt.

2 Functions

2-174

The initial guesses for the states (opt.X0) and manipulated variables (opt.MV0) are the optimal
trajectories computed by nlmpcmove and correspond to the last p-1 rows of info.Xopt and
info.MVopt, respectively.

To use these initial guesses in the next control interval, specify opt as the options input argument
to nlmpcmove.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

MVopt — Optimal manipulated variable sequence
array

Optimal manipulated variable sequence, returned as a (p+1)-by-Nmv array, where p is the prediction
horizon and Nmv is the number of manipulated variables.

MVopt(i,:) contains the calculated optimal manipulated variable values at time k+i-1, for i =
1,...,p, where k is the current time. MVopt(1,:) contains the same manipulated variable values
as output argument mv. Since the controller does not calculate optimal control moves at time k+p,
MVopt(p+1,:) is equal to MVopt(p,:).

Xopt — Optimal prediction model state sequence
array

Optimal prediction model state sequence, returned as a (p+1)-by-Nx array, where p is the prediction
horizon and Nx is the number of states in the prediction model.

Xopt(i,:) contains the calculated state values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Xopt(1,:) is the same as the current states in x.

Yopt — Optimal output variable sequence
array

Optimal output variable sequence, returned as a (p+1)-by-Ny array, where p is the prediction horizon
and Ny is the number of outputs.

Yopt(i,:) contains the calculated output values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Yopt(1,:) is computed based on the current states in x and the current measured
disturbances in md, if any.

Topt — Prediction horizon time sequence
column vector

Prediction horizon time sequence, returned as a column vector of length p+1, where p is the
prediction horizon. Topt contains the time sequence from time k to time k+p, where k is the current
time.

Topt(1) = 0 represents the current time. Subsequent time steps Topt(i) are Ts*(i-1), where Ts
is the controller sample time.

Use Topt when plotting the MVopt, Xopt, or Yopt sequences.

Slack — Stacked slack variables vector
nonnegative vector

 nlmpcmove

2-175

Stacked slack variables vector, used in constraint softening. If all elements are zero, then all soft
constraints are satisfied over the entire prediction horizon. If any element is greater than zero, then
at least one soft constraint is violated.

The slack variable vector for all stages are stacked as:

[slack variable vector for stage 1; % if used
 slack variable vector for stage 2; % if used
 ...
 slack variable vector for stage p+1; % if used
]

ExitFlag — Optimization exit code
integer

Optimization exit code, returned as one of the following:

• Positive Integer — Optimal solution found
• 0 — Feasible suboptimal solution found after the maximum number of iterations
• Negative integer — No feasible solution found

Iterations — Number of iterations
positive integer

Number of iterations used by the nonlinear programming solver, returned as a positive integer.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its objectives.

The cost value is only meaningful when ExitFlag is nonnegative.

simdata — Run-time simulation data structure
structure

Updated run-time simulation data, returned as a structure, containing new initial guesses for the
state and manipulated trajectories to be used in the next control interval. It is a structure with the
following fields.

MeasuredDisturbance — Measured disturbance values
[] (default) | row vector | array

Measured disturbance values, specified as a row vector of length Nmd or an array with Nmd columns,
where Nmd is the number of measured disturbances. If your multistage MPC object has any measured
disturbance channel defined, you must specify MeasuredDisturbance. If your controller has no
measured disturbances, this field does not exist in the structure generated by getSimulationData.

To use the same disturbance values across the prediction horizon, specify a row vector.

To vary the disturbance values over the prediction horizon from time k to time k+p, specify an array
with up to p+1 rows. Here, k is the current time and p is the prediction horizon. Each row contains
the disturbance values for one prediction horizon step. If you specify fewer than p rows, the values in
the final row are used for the remaining steps of the prediction horizon.

2 Functions

2-176

MVMin — Manipulated variable lower bounds
[] (default) | row vector | matrix

Manipulated variable lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMin(:,i) replaces the
ManipulatedVariables(i).Min property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVMax — Manipulated variable upper bounds
[] (default) | row vector | matrix

Manipulated variable upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMax(:,i) replaces the
ManipulatedVariables(i).Max property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMin — Manipulated variable rate lower bounds
[] (default) | row vector | matrix

Manipulated variable rate lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMin(:,i) replaces the
ManipulatedVariables(i).RateMin property of the controller at run time. MVRateMin bounds
must be nonpositive.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMax — Manipulated variable rate upper bounds
[] (default) | row vector | matrix

Manipulated variable rate upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMax(:,i) replaces the
ManipulatedVariables(i).RateMax property of the controller at run time. MVRateMax bounds
must be nonnegative.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for

 nlmpcmove

2-177

one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateMin — State lower bounds
[] (default) | row vector | matrix

State lower bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMin(:,i) replaces the States(i).Min property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateMax — State upper bounds
[] (default) | row vector | matrix

State upper bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMax(:,i) replaces the States(i).Max property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateFcnParameters — State function parameter values
[] (default) | vector

State function parameter values, specified as a vector with length equal to the value of the
Model.ParameterLength property of the multistage controller object. If Model.StateFcn needs a
parameter vector, you must provide its value at runtime using this field. If Model.ParameterLength
is 0 this field does not exist in the structure returned by getSimulationData.

StageFcnParameters — Stage function parameter values
[] (default) | vector

Stage functions parameter values, specified as a vector with length equal to the sum of all the values
in the Stages(i).ParameterLength properties of the multistage controller object. If any cost or
constraint function defined in the Stages property needs a parameter vector, you must provide all
the parameter vectors at runtime (stacked in a single column) using this field. If none of your stage
functions have parameters, this field does not exist in the structure returned by
getSimulationData.

You must stack the parameter vectors for all stages in the column vector StateFcnParameters as
follows.

[parameter vector for stage 1;
 parameter vector for stage 2;
 ...

2 Functions

2-178

 parameter vector for stage p+1;
]

TerminalState — Terminal state
[] (default) | vector

Terminal state, specified as a column vector with as many elements as the number of states. The
terminal state is the desired state at the last prediction step. To specify desired terminal states at run-
time via this field, you must specify finite values in the TerminalState field of the Model property
of nlmpcMSobj. Specify inf for the states that do not need to be constrained to a terminal value. At
run time, nlmpcmove ignores any values in the TerminalState field of simdata that correspond to
inf values in nlmpcMSobj. If you do not specify any terminal value condition in nlmpcMSobj, this
field is not created in simdata.

If there is no TerminalState in simdata then the terminal state constraint (if present) does not
change at run time.

InitialGuess — Initial guesses for the decision variables
[] (default) | vector

Initial guesses for the decision variables, specified as a column vector of length equal to the sum of
the lengths of all the decision variable vectors for each stage. Good initial guesses are important
since they help the solver to converge to a solution faster. Therefore, when simulating a control loop
by calling nlmpcmove repeatedly in a loop, pass simdata as an input argument (so initial guesses
can be used), and at the same time return an updated version of simdata (with new initial guesses
for the next control interval) as an output argument.

You must be stack the initial guesses for all stages in the column vector InitialGuess as follows.

[state vector guess for stage 1;
 manipulated variable vector guess for stage 1;
 manipulated variable vector rate guess for stage 1; % if used
 slack variable vector guess for stage 1; % if used
 state vector guess for stage 2;
 manipulated variable vector guess for stage 2;
 manipulated variable vector rate guess for stage 2; % if used
 slack variable vector guess for stage 2; % if used
 ...
 state vector guess for stage p;
 manipulated variable vector guess for stage p;
 manipulated variable vector rate guess for stage p; % if used
 slack variable vector guess for stage p; % if used
 state vector guess for stage p+1;
 slack variable vector guess for stage p+1; % if used
]

If InitialGuess is [], the default initial guesses are calculated from the x and lastmv arguments
passed to nlmpcmove.

In general, during closed-loop simulation, you do not specify InitialGuess yourself. Instead, when
calling nlmpcmove, return the simdata output argument, which contains the calculated initial
guesses for the next control interval. You can then pass simdata as an input argument to
nlmpcmove for the next control interval. These steps are a best practice, even if you do not specify
any other run-time options.

 nlmpcmove

2-179

Tips
During closed-loop simulations, it is best practice to warm start the nonlinear solver by using the
predicted state and manipulated variable trajectories from the previous control interval as the initial
guesses for the current control interval. To use these trajectories as initial guesses:

1 Return the opt output argument when calling nlmpcmove. This nlmpcmoveopt object contains
any run-time options you specified in the previous call to nlmpcmove, along with the initial
guesses for the state (opt.X0) and manipulated variable (opt.MV0) trajectories.

2 Pass this object in as the options input argument to nlmpcmove for the next control interval.

These steps are a best practice, even if you do not specify any other run-time options.

See Also
nlmpc | nlmpcmoveopt | nlmpcMultistage | getSimulationData

Topics
“Nonlinear MPC”
“Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC”

Introduced in R2018b

2 Functions

2-180

nlmpcmoveCodeGeneration
Compute nonlinear MPC control moves with code generation support

Syntax
[mv,newOnlineData] = nlmpcmoveCodeGeneration(coreData,x,lastMV,onlineData)
[___ ,info] = nlmpcmoveCodeGeneration(___)

Description
[mv,newOnlineData] = nlmpcmoveCodeGeneration(coreData,x,lastMV,onlineData)
computes optimal nonlinear MPC control moves and supports code generation for deployment to real-
time targets. Control moves are calculated using the current prediction model states (x), the control
moves from the previous control interval (lastMV), and input data structures (coreData and
nlOnlineData) generated using getCodeGenerationData.

nlmpcmoveCodeGeneration does not check input arguments for correct dimensions and data types.

[___ ,info] = nlmpcmoveCodeGeneration(___) returns additional information about the
optimization result, including the number of iterations and the objective function cost.

Examples

Compute Nonlinear MPC Control Moves Using Code Generation Data Structures

Create a nonlinear MPC controller with four states, two outputs, and one input.

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter, Ts, to represent the sample time. Specify the
number of parameters and create a parameter vector.

nlobj.Model.NumberOfParameters = 1;
params = {Ts};

 nlmpcmoveCodeGeneration

2-181

Specify the output function of the model, passing the sample time parameter as an input argument.

nlobj.Model.OutputFcn = "pendulumOutputFcn";

Define standard constraints for the controller.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;
nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

Validate the prediction model functions.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj,x0,u0,[],params);

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Only two of the plant states are measurable. Therefore, create an extended Kalman filter for
estimating the four plant states. Its state transition function is defined in pendulumStateFcn.m and
its measurement function is defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn,@pendulumMeasurementFcn);

Define initial conditions for the simulation, initialize the extended Kalman filter state, and specify a
zero initial manipulated variable value.

x0 = [0;0;-pi;0];
y0 = [x0(1);x0(3)];
EKF.State = x0;
mv0 = 0;

Create code generation data structures for the controller, specifying the initial conditions and
parameters.

[coreData,onlineData] = getCodeGenerationData(nlobj,x0,mv0,params);

Specify the output reference value in the online data structure.

onlineData.ref = [0 0];

To verify the controller operation, run a simulation for 10 seconds. During each control interval:

1 Correct the previous prediction using the current measurement.
2 Compute optimal control moves using nlmpcmoveCodeGeneration. This function returns the

computed optimal sequences in onlineData. Passing the updated data structure to
nlmpcmoveCodeGeneration in the next control interval provides initial guesses for the optimal
sequences.

3 Predict the model states.
4 Apply the first computed optimal control move to the plant, updating the plant states.
5 Generate sensor data with white noise.

2 Functions

2-182

6 Save the plant states.

mv = mv0;
y = y0;
x = x0;
Duration = 10;
xHistory = x0;
for ct = 1:(Duration/Ts)
 % Correct previous prediction
 xk = correct(EKF,y);
 % Compute optimal control move
 [mv,onlineData] = nlmpcmoveCodeGeneration(coreData,xk,mv,onlineData);
 % Predict prediction model states for the next iteration
 predict(EKF,[mv; Ts]);
 % Implement first optimal control move
 x = pendulumDT0(x,mv,Ts);
 % Generate sensor data
 y = x([1 3]) + randn(2,1)*0.01;
 % Save plant states
 xHistory = [xHistory x];
end

Generate a MEX function with MATLAB® Coder™, specifying coreData as a constant.

func = 'nlmpcmoveCodeGeneration';
funcOutput = 'nlmpcmoveMEX';
Cfg = coder.config('mex');
Cfg.DynamicMemoryAllocation = 'off';
codegen('-config',Cfg,func,'-o',funcOutput,'-args',...
 {coder.Constant(coreData),xk,mv,onlineData});

Code generation successful.

Input Arguments
coreData — Nonlinear MPC configuration parameters
structure

Nonlinear MPC configuration parameters that are constant at run time, specified as a structure
generated using getCodeGenerationData.

Note When using codegen, coreData must be defined as coder.Constant.

x — Current prediction model states
column vector

Current prediction model states, specified as a vector of lengthNx, where Nx is the number of
prediction model states. The prediction model state function is defined in nlobj.Model.StateFcn.

Since the nonlinear MPC controller does not perform state estimation, you must either measure or
estimate the current prediction model states at each control interval. For more information on
nonlinear MPC prediction models, see “Specify Prediction Model for Nonlinear MPC”.

 nlmpcmoveCodeGeneration

2-183

lastMV — Control signals used in plant at previous control interval
column vector

Control signals used in plant at previous control interval, specified as a column vector of lengthNmv,
where Nmv is the number of manipulated variables.

Note Specify lastMV as the manipulated variable signals applied to the plant in the previous control
interval. Typically, these signals are the values generated by the controller (mv). However, this is not
always the case. For example, if your controller is offline and running in tracking mode; that is, the
controller output is not driving the plant, then feeding the actual control signal to last_mv can help
achieve bumpless transfer when the controller is switched back online.

onlineData — Online controller data
structure

Online controller data that you must update at run time, specified as a structure with the following
fields. Generate the initial structure using getCodeGenerationData. Some structure fields are not
required, depending on the configuration of the controller and what weights or constraints vary at
run time.

ref — Output reference values
row vector | array

Plant output reference values, specified as a row vector of length Ny or an array with Ny columns,
where Ny is the number of output variables.

To use the same reference values across the prediction horizon, specify a row vector.

To vary the reference values over the prediction horizon from time k+1 to time k+p, specify an array
with up to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the
reference values for one prediction horizon step. If you specify fewer than p rows, the values in the
final row are used for the remaining steps of the prediction horizon.

If your controller cost function does not use ref, leave ref at its default value.

mvTarget — Manipulated variable targets
row vector | array

Manipulated variable targets, specified as a row vector of length Nmv or an array with Nmv columns,
where Nmv is the number of manipulated variables.

To use the same manipulated variable targets across the prediction horizon, specify a row vector.

To vary the targets over the prediction horizon (previewing) from time k to time k+p-1, specify an
array with up to p rows. Here, k is the current time and p is the prediction horizon. Each row
contains the targets for one prediction horizon step. If you specify fewer than p rows, the final targets
are used for the remaining steps of the prediction horizon.

If your controller cost function does not use mvTarget, leave mvTarget at its default value.

X0 — Initial guesses for the optimal state solutions
vector | array

2 Functions

2-184

Initial guesses for the optimal state solutions, specified as a row vector of length Nx or an array with
Nx columns, where Nx is the number of states.

To use the same initial guesses across the prediction horizon, specify a row vector.

To vary the initial guesses over the prediction horizon from time k+1 to time k+p, specify an array
with up to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the
initial guesses for one prediction horizon step. If you specify fewer than p rows, the final guesses are
used for the remaining steps of the prediction horizon.

In general, during closed-loop simulation, you do not specify X0 yourself. Instead, when calling
nlmpcmoveCodeGeneration, return the newOnlineData output argument, which contains updated
X0 estimates. You can then pass newOnlineData in as the onlineData input argument to
nlmpcmoveCodeGeneration for the next control interval.

MV0 — Initial guesses for the optimal manipulated variable solutions
vector | array

Initial guesses for the optimal manipulated variable solutions, specified as a row vector of length Nmv
or an array with Nmv columns, where Nmv is the number of manipulated variables.

To use the same initial guesses across the prediction horizon, specify a row vector.

To vary the initial guesses over the prediction horizon from time k to time k+p-1, specify an array
with up to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the
initial guesses for one prediction horizon step. If you specify fewer than p rows, the final guesses are
used for the remaining steps of the prediction horizon.

In general, during closed-loop simulation, you do not specify MV0 yourself. Instead, when calling
nlmpcmoveCodeGeneration, return the newOnlineData output argument, which contains updated
MV0 estimates. You can then pass newOnlineData in as the onlineData input argument to
nlmpcmoveCodeGeneration for the next control interval.

Slack0 — Initial guess for the slack variable at the solution
nonnegative scalar

Initial guess for the slack variable at the solution, specified as a nonnegative scalar.

In general, during closed-loop simulation, you do not specify Slack0 yourself. Instead, when calling
nlmpcmoveCodeGeneration, return the newOnlineData output argument, which contains updated
Slack0 estimates. You can then pass newOnlineData in as the onlineData input argument to
nlmpcmoveCodeGeneration for the next control interval.

md — Measured disturbance values
row vector | array

Measured disturbance values, specified as a row vector of length Nmd or an array with Nmd columns,
where Nmd is the number of measured disturbances. If your controller has measured disturbances,
you must specify md. If your controller has no measured disturbances, then
getCodeGenerationData omits this field.

To use the same disturbance values across the prediction horizon, specify a row vector.

To vary the disturbance values over the prediction horizon from time k to time k+p, specify an array
with up to p+1 rows. Here, k is the current time and p is the prediction horizon. Each row contains

 nlmpcmoveCodeGeneration

2-185

the disturbance values for one prediction horizon step. If you specify fewer than p rows, the values in
the final row are used for the remaining steps of the prediction horizon.

Parameters — Parameter values
cell vector

Parameter values used by the prediction model, custom cost function, and custom constraints,
specified as a cell vector with length equal to the Model.NumberOfParameters property of the
controller. If the controller has no parameters, then getCodeGenerationData omits this field.

The order of the parameters must match the order defined for the prediction model, custom cost
function, and custom constraints.

OutputWeights — Output variable tuning weights
row vector | array

Output variable tuning weights that replace the default tuning weights at run time, specified as a row
vector of length Ny or an array with Ny columns, where Ny is the number of output variables. If you
expect your output variable weights to vary at run time, you must add this field to the online data
structure when you call getCodeGenerationData.

To use the same weights across the prediction horizon, specify a row vector.

To vary the weights over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the weights
for one prediction horizon step. If you specify fewer than p rows, the final weights are used for the
remaining steps of the prediction horizon.

MVWeights — Manipulated variable tuning weights
row vector | array

Manipulated variable tuning weights that replace the default tuning weights at run time, specified as
a row vector of length Nmv or an array with Nmv columns, where Nmv is the number of manipulated
variables. If you expect your manipulated variable weights to vary at run time, you must add this field
to the online data structure when you call getCodeGenerationData.

To use the same weights across the prediction horizon, specify a row vector.

To vary the weights over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the weights
for one prediction horizon step. If you specify fewer than p rows, the final weights are used for the
remaining steps of the prediction horizon.

MVRateWeights — Manipulated variable rate tuning weights
row vector | array

Manipulated variable rate tuning weights that replace the default tuning weights at run time,
specified as a row vector of length Nmv or an array with Nmv columns, where Nmv is the number of
manipulated variables. If you expect your manipulated variable rate weights to vary at run time, you
must add this field to the online data structure when you call getCodeGenerationData.

To use the same weights across the prediction horizon, specify a row vector.

To vary the weights over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the weights

2 Functions

2-186

for one prediction horizon step. If you specify fewer than p rows, the final weights are used for the
remaining steps of the prediction horizon.

ECRWeight — Slack variable tuning weight
positive scalar

Slack variable rate tuning weight that replaces the default tuning weight at run time, specified as a
positive scalar. If you expect your slack variable weight to vary at run time, you must add this field to
the online data structure when you call getCodeGenerationData.

OutputMin — Output variable lower bounds
row vector | array

Output variable lower bounds that replace the default lower bounds at run time, specified as a row
vector of length Ny or an array with Ny columns, where Ny is the number of output variables. If you
expect your output variable lower bounds to vary at run time, you must add this field to the online
data structure when you call getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

OutputMax — Output variable upper bounds
row vector | array

Output variable upper bounds that replace the default upper bounds at run time, specified as a row
vector of length Ny or an array with Ny columns, where Ny is the number of output variables. If you
expect your output variable upper bounds to vary at run time, you must add this field to the online
data structure when you call getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateMin — State lower bounds
row vector | array

State lower bounds that replace the default lower bounds at run time, specified as a row vector of
length Nx or an array with Nx columns, where Nx is the number of states. If you expect your state
lower bounds to vary at run time, you must add this field to the online data structure when you call
getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

 nlmpcmoveCodeGeneration

2-187

StateMax — State upper bounds
row vector | array

State upper bounds that replace the default upper bounds at run time, specified as a row vector of
length Nx or an array with Nx columns, where Nx is the number of states. If you expect your state
upper bounds to vary at run time, you must add this field to the online data structure when you call
getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVMin — Manipulated variable lower bounds
row vector | array

Manipulated variable lower bounds that replace the default lower bounds at run time, specified as a
row vector of length Nmv or an array with Nmv columns, where Nmv is the number of manipulated
variables. If you expect your manipulated variable lower bounds to vary at run time, you must add
this field to the online data structure when you call getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVMax — Manipulated variable upper bounds
row vector | array

Manipulated variable upper bounds that replace the default upper bounds at run time, specified as a
row vector of length Nmv or an array with Nmv columns, where Nmv is the number of manipulated
variables. If you expect your manipulated variable upper bounds to vary at run time, you must add
this field to the online data structure when you call getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMin — Manipulated variable rate lower bounds
row vector | array

Manipulated variable rate lower bounds that replace the default lower bounds at run time, specified
as a row vector of length Nmv or an array with Nmv columns, where Nmv is the number of manipulated
variables. If you expect your manipulated variable rate lower bounds to vary at run time, you must
add this field to the online data structure when you call getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

2 Functions

2-188

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMax — Manipulated variable rate upper bounds
row vector | array

Manipulated variable rate upper bounds that replace the default upper bounds at run time, specified
as a row vector of length Nmv or an array with Nmv columns, where Nmv is the number of manipulated
variables. If you expect your manipulated variable rate upper bounds to vary at run time, you must
add this field to the online data structure when you call getCodeGenerationData.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify an array with up
to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds
for one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

Output Arguments
mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, returned as a column vector of length Nmv, where Nmv is
the number of manipulated variables.

If the solver converges to a local optimum solution (info.ExitFlag is positive), then mv contains
the optimal solution.

If the solver reaches the maximum number of iterations, finds a feasible suboptimal solution
(info.ExitFlag = 0) and:

• coredata.usesuboptimalsolution is true, then mv contains the suboptimal solution
• coredata.usesuboptimalsolution is false, then mv contains lastMV

If the solver fails to find a feasible solution (info.ExitFlag is negative), then mv contains lastMV.

newOnlineData — Updated online controller data
structure

Updated online controller data, returned as a structure. This structure is the same as onlineData,
except that the decision variable initial guesses (X0, MV0, and Slack0) are updated.

For subsequent control intervals, warm start the solver by modifying the online data in
newOnlineData and passing the updated structure to nlmpcmoveCodeGeneration as
onlineData. Doing so allows the solver to use the decision variable initial guesses as a starting
point for its solution.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

 nlmpcmoveCodeGeneration

2-189

MVopt — Optimal manipulated variable sequence
array

Optimal manipulated variable sequence, returned as a (p+1)-by-Nmv array, where p is the prediction
horizon and Nmv is the number of manipulated variables.

MVopt(i,:) contains the calculated optimal manipulated variable values at time k+i-1, for i =
1,...,p, where k is the current time. MVopt(1,:) contains the same manipulated variable values
as output argument mv. Since the controller does not calculate optimal control moves at time k+p,
MVopt(p+1,:) is equal to MVopt(p,:).

Xopt — Optimal prediction model state sequence
array

Optimal prediction model state sequence, returned as a (p+1)-by-Nx array, where p is the prediction
horizon and Nx is the number of states in the prediction model.

Xopt(i,:) contains the calculated state values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Xopt(1,:) is the same as the current states in x.

Yopt — Optimal output variable sequence
array

Optimal output variable sequence, returned as a (p+1)-by-Ny array, where p is the prediction horizon
and Ny is the number of outputs.

Yopt(i,:) contains the calculated output values at time k+i-1, for i = 2,...,p+1, where k is the
current time. Yopt(1,:) is computed based on the current states in x and the current measured
disturbances in md, if any.

Topt — Prediction horizon time sequence
column vector

Prediction horizon time sequence, returned as a column vector of length p+1, where p is the
prediction horizon. Topt contains the time sequence from time k to time k+p, where k is the current
time.

Topt(1) = 0 represents the current time. Subsequent time steps Topt(i) are Ts*(i-1), where Ts
is the controller sample time.

Use Topt when plotting the MVopt, Xopt, or Yopt sequences.

Slack — Slack variable at optimum
nonnegative scalar

Slack variable at optimum, ε, used in constraint softening, returned as a nonnegative scalar value.

• ε = 0 — All soft constraints are satisfied over the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is violated, ε

represents the worst-case soft constraint violation (scaled by your ECR values for each
constraint).

ExitFlag — Optimization exit code
integer

2 Functions

2-190

Optimization exit code, returned as one of the following:

• Positive Integer — Optimal solution found
• 0 — Feasible suboptimal solution found after the maximum number of iterations
• Negative integer — No feasible solution found

Iterations — Number of iterations
positive integer

Number of iterations used by the solver, returned as a positive integer.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its objectives.

The cost value is only meaningful when ExitFlag is nonnegative.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

• nlmpcmoveCodeGeneration supports generating code only for nonlinear MPC controllers that
use the default fmincon solver with the SQP algorithm. However, you can simulate controllers
using other fmincon algorithms.

• When used for code generation, nonlinear MPC controllers do not support anonymous functions
for the prediction model, custom cost function, or custom constraint functions. However,
nlmpcmoveCodeGeneration can still simulate controllers that use anonymous functions.

• Your custom functions must be on the MATLAB path and compatible with MATLAB Coder. For
more information on checking compatibility, see “Check Code by Using the Code Generation
Readiness Tool” (MATLAB Coder).

• Code generation for nonlinear MPC controllers supports only double-precision data.
• To generate code for computing optimal control moves for a nonlinear MPC controller:

1 Generate data structures from a nonlinear MPC controller using getCodeGenerationData.
2 To verify that your controller produces the expected closed-loop results, simulate it using

nlmpcmoveCodeGeneration in place of nlmpcmove.
3 Generate code for nlmpcmoveCodeGeneration using codegen. This step requires MATLAB

Coder software.

See Also
nlmpcmove | getCodeGenerationData | getSimulationData

Topics
“Generate Code and Deploy Controller to Real-Time Targets”

 nlmpcmoveCodeGeneration

2-191

Introduced in R2020a

2 Functions

2-192

plot
Plot responses generated by MPC simulations

Syntax
plot(MPCobj,t,y,r,u,v,d)

Description
Use the Model Predictive Control Toolbox plot function to plot responses generated by MPC
simulations.

To create 2-D line plots of data points instead, see plot.

plot(MPCobj,t,y,r,u,v,d) plots the results of a simulation based on the MPC object MPCobj.

Examples

Plot Responses from MPC Simulation

Create a plant, a corresponding MPC object, and convert it to zero/pole/gain form.

mpcverbosity off; % turn off mpc messaging
plant=tf(1,[1 -1 1],0.2); % create plant (0.2 seconds sampling time)
mpcobj=mpc(plant,0.2); % create mpc object (0.2 second sampling time)
[y,t,u,xp]=sim(mpcobj,10,1); % simulate closed loop for 10 steps

plot(mpcobj,t,y,ones(size(y)),u); % plot response

% You can plot other data. The signal type definitions and labels are contained in mpcobj
plot(mpcobj,1:10,rand(10,1),zeros(10,1),sin(1:10)'); % random response

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

t — Time sequence
double vector

Time sequence, specified as an Nt-by-1 array, where Nt is the number of simulation steps.
Example: 1:10

y — Sequence of plant outputs values
double array

 plot

2-193

Sequence of plant outputs values, specified as an array of output responses of size Nt-by-Ny, where
Ny is the number of measured outputs of the plant.
Example: rand(10,1)

r — Sequence of reference values
double array

Sequence of reference values for the plant output. It is an array of setpoints and has the same size as
y.
Example: ones(10,1)

u — Sequence of manipulated variables
double array

Sequence of manipulated variables, specified as an array of manipulated variable inputs of size Nt-by-
Nu, where Nu is the number of manipulated variables.
Example: sin(1:10)'

v — Sequence of measured disturbances inputs
[] (default) | double array

Sequence of measured disturbances input, specified as a matrix of size Nt-by-Nv, where Nv is the
number of measured disturbance inputs.
Example: zeros(10,1)

d — Sequence of unmeasured disturbances inputs
[] (default) | double array

Sequence of unmeasured disturbances inputs, specified as an array of size Nt-by-Nd, where Nd is the
number of unmeasured disturbances inputs.
Example: zeros(10,1)

See Also
sim | mpc

Introduced before R2006a

2 Functions

2-194

plotSection
Visualize explicit MPC control law as 2-D sectional plot

Syntax
plotSection(EMPCobj,plotParams)

Description
plotSection(EMPCobj,plotParams) displays a 2-D sectional plot of the piecewise affine regions
used by an explicit MPC controller. All but two of the control law’s free parameters are fixed, as
specified by plotParams. The two remaining variables form the plot axes. By default, the
EMPCobj.Range property sets the bounds for these axes.

Examples

Specify Fixed Parameters for 2-D Plot of Explicit Control Law

Define a double integrator plant model and create a traditional implicit MPC controller for this plant.
Constrain the manipulated variable to have an absolute value less than 1.

plant = tf(1,[1 0 0]);
MPCobj = mpc(plant,0.1,10,3);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

MPCobj.MV = struct('Min',-1,'Max',1);

Define the parameter bounds for generating an explicit MPC controller.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];
range.Reference.Min(:) = -2;
range.Reference.Max(:) = 2;
range.ManipulatedVariable.Min(:) = -1.1;
range.ManipulatedVariable.Max(:) = 1.1;

Create an explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range);

Regions found / unexplored: 19/ 0

 plotSection

2-195

Create a default plot parameter structure, which specifies that all of the controller parameters are
fixed at their nominal values for plotting.

plotParams = generatePlotParameters(EMPCobj);

Allow the controller states to vary when creating a plot.

plotParams.State.Index = [];
plotParams.State.Value = [];

Fix the manipulated variable and reference signal to 0 for plotting.

plotParams.ManipulatedVariable.Index(1) = 1;
plotParams.ManipulatedVariable.Value(1) = 0;
plotParams.Reference.Index(1) = 1;
plotParams.Reference.Value(1) = 0;

Generate the 2-D section plot for the explicit MPC controller.

plotSection(EMPCobj,plotParams)

ans =
 Figure (1: PiecewiseAffineSectionPlot) with properties:

 Number: 1
 Name: 'PiecewiseAffineSectionPlot'
 Color: [1 1 1]
 Position: [360 502 560 420]

2 Functions

2-196

 Units: 'pixels'

 Show all properties

Input Arguments
EMPCobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller for which you want to create a 2-D sectional plot, specified as an Explicit
MPC controller object. Use generateExplicitMPC to create an explicit MPC controller.

plotParams — Parameters for sectional plot
structure

Parameters for sectional plot of explicit MPC control law, specified as a structure. Use
generatePlotParameters to create an initial structure in which all the parameters of the
controller are fixed at their nominal values. Then, modify this structure as necessary before invoking
plotSection. See generatePlotParameters for more information.

See Also
generateExplicitMPC | generatePlotParameters

Introduced in R2014b

 plotSection

2-197

review
Examine MPC controller for design errors and stability problems at run time

Syntax
review(mpcobj)

results = review(mpcobj)

Description
review(mpcobj) checks for potential design issues in the model predictive controller with defined
sample time, mpcobj, and generates a testing report. The testing report provides information about
each test, highlights test warnings and failures, and suggests possible solutions. For more
information on the tests performed by the review function, see “Algorithms” on page 2-202.

results = review(mpcobj) returns the test results and suppresses the testing report.

Examples

Examine MPC Controller for Design Errors or Stability Problems

Define a plant model, and create an MPC controller.

plant = tf(1, [10 1]);
Ts = 2;
MPCobj = mpc(plant,Ts);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Set hard upper and lower bounds on the manipulated variable and its rate of change.

MV = MPCobj.MV;
MV.Min = -2;
MV.Max = 2;
MV.RateMin = -4;
MV.RateMax = 4;
MPCobj.MV = MV;

Review the controller design. The review function generates and opens a report in the Web Browser
window.

review(MPCobj)

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

2 Functions

2-198

review flags a potential constraint conflict that could result if this controller was used to control a
real process. To view details about the warning, click Hard MV Constraints.

 review

2-199

Obtain Test Results and Suppress Testing Report

Define a plant model, and create an MPC controller.

plant = rss(3,1,1);
plant.D = 0;
Ts = 0.1;
MPCobj = mpc(plant,Ts);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Specify constraints for the controller.

MV = MPCobj.MV;
MV.Min = -2;
MV.Max = 2;
MV.RateMin = -4;
MV.RateMax = 4;
MPCobj.MV = MV;

Review the controller design, and suppress the testing report.

results = review(MPCobj)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

results = struct with fields:
 ObjectCreation: 1
 HessianMatrix: 1
 InternalStability: 1
 NominalStability: 1
 SteadyState: 1
 HardMVConstraints: 0
 HardOtherConstraints: 1
 SoftConstraints: 1

All of the tests passed, except for the hard MV constraints test, which generated a warning.

Obtain Test Results for Multiple Controllers

Create and review designs for gain-scheduled model predictive controllers for two plant operating
conditions.

Define the model parameters.

M1 = 1;
M2 = 5;
k1 = 1;
k2 = 0.1;

2 Functions

2-200

b1 = 0.3;
b2 = 0.8;
yeq1 = 10;
yeq2 = -10;

Create plant models for each of the two operating conditions.

A1 = [0 1; -k1/M1 -b1/M1];
B1 = [0 0; -1/M1 k1*yeq1/M1];
C1 = [1 0];
D1 = [0 0];
sys1 = ss(A1,B1,C1,D1);
sys1 = setmpcsignals(sys1,'MV',1,'MD',2);

A2 = [0 1; -(k1+k2)/(M1+M2) -(b1+b2)/(M1+M2)];
B2 = [0 0; -1/(M1+M2) (k1*yeq1+k2*yeq2)/(M1+M2)];
C2 = [1 0];
D2 = [0 0];
sys2 = ss(A2,B2,C2,D2);
sys2 = setmpcsignals(sys2,'MV',1,'MD',2);

Design an MPC controller for each operating condition.

Ts = 0.2;
p = 6;
m = 2;
MPC1 = mpc(sys1,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

MPC2 = mpc(sys2,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

controllers = {MPC1,MPC2};

Review the controller designs, and store the test result structures.

for i = 1:2
 results(i) = review(controllers{i});
end

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Input Arguments
mpcobj — MPC controller
mpc object

 review

2-201

MPC controller object, specified as an mpc object.

Output Arguments
results — Test results
structure

Test results, returned as a structure with the following fields:

• ObjectCreation — MPC object creation test
• HessianMatrix — QP Hessian matrix validity test
• InternalStability — Internal stability test
• NominalStability — Nominal stability test
• SteadyState — Closed-loop steady-state gains test
• HardMVConstraints — Hard MV constraints test
• HardOtherConstraints — Other hard constraints test
• SoftConstraints — Soft constraints test

For more information on the tests performed by the review function, see “Algorithms” on page 2-
202.

The results structure does not contain a field for the Memory Size for MPC Data test.

For each test, the result is returned as one of the following:

• 1 — Pass
• 0 — Warning
• -1 — Fail

If a given test generates a warning or fails, generate a testing report by calling review without an
output argument. The testing report provides details about the warnings and failures, and suggests
possible solutions.

Tips
• You can also review your controller design in the MPC Designer app. On the Tuning tab, in the

Analysis section, click Review Design.
• Test your controller design using techniques such as simulations, since review cannot detect all

possible performance factors.

Algorithms
The review command performs the following tests.

Test Description
MPC Object Creation Tests whether the controller specifications generate a valid

MPC controller. If the controller is invalid, additional tests are
not performed.

2 Functions

2-202

Test Description
QP Hessian Matrix Validity Tests whether the MPC quadratic programming (QP) problem

for the controller has a unique solution. You must choose cost
function parameters (penalty weights) and horizons such that
the QP Hessian matrix is positive-definite.

Closed-Loop Internal Stability Extracts the A matrix from the state-space realization of the
unconstrained controller, and then calculate its eigenvalues. If
the absolute value of each eigenvalue is less than or equal to 1
and the plant is stable, then your feedback system is internally
stable.

Closed-Loop Nominal Stability Extracts the A matrix from the discrete-time state-space
realization of the closed-loop system; that is, the plant and
controller connected in a feedback configuration. Then
calculate the eigenvalues of A. If the absolute value of each
eigenvalue is less than or equal to 1, then the nominal
(unconstrained) system is stable. This test is not performed if
mpcobj is set to use a custom state estimator.

Closed-Loop Steady-State Gains Tests whether the controller forces all controlled output
variables to their targets at steady state in the absence of
constraints. This test is not performed if mpcobj is set to use a
custom state estimator. This test is not performed if mpcobj is
set to use a custom state estimator.

Hard MV Constraints Tests whether the controller has hard constraints on both a
manipulated variable and its rate of change, and if so, whether
these constraints may conflict at run time.

Other Hard Constraints Tests whether the controller has hard output constraints or
hard mixed input/output constraints, and if so, whether these
constraints may become impossible to satisfy at run time.

Soft Constraints Tests whether the controller has the proper balance of hard
and soft constraints by evaluating the constraint ECR
parameters.

Memory Size for MPC Data Estimates the memory size required by the controller at run
time.

Alternatives
review automates certain tests that you can perform at the command line.

• To test for steady-state tracking errors, use cloffset.
• To test the internal stability of a controller, check the eigenvalues of the mpc object. Convert the

mpc object to a state-space model using ss, and call isstable.

See Also
cloffset | mpc | set | ss | setEstimator

Topics
“Simulation and Code Generation Using Simulink Coder”
“Review Model Predictive Controller for Stability and Robustness Issues”

 review

2-203

Introduced in R2011b

2 Functions

2-204

sensitivity
Calculate the value of a performance metric and its sensitivity to the diagonal weights of an MPC
controller

Syntax
[J,sens] = sensitivity(MPCobj,PerfFcn,PerfWeights,Ns,r,v,SimOptions,utarget)
[J,sens] = sensitivity(MPCobj,customPerFcn,Par1,...,ParN)

Description
[J,sens] = sensitivity(MPCobj,PerfFcn,PerfWeights,Ns,r,v,SimOptions,utarget)
calculates the value J and sensitivity sens of a predefined closed-loop, cumulative performance
metric with respect to the diagonal weights defined in the MPC controller object MPCobj. You chose
the shape of the performance metric, among the available options, using PerfFcn. The optional
arguments PerfWeights, Ns, r, v, SimOptions, and utarget specify the performance metric
weights, simulation steps, reference and disturbance signals, simulation options, and manipulated
variables targets, respectively.

[J,sens] = sensitivity(MPCobj,customPerFcn,Par1,...,ParN) calculates the value J and
sensitivity sens of the performance metric defined in the custom function customPerFcn, with
respect to the diagonal weights defined in the MPC controller object MPCobj. The remaining input
arguments Par1,Par2,...,ParN specify the value of the parameters needed by customPerFnc.

Examples

Calculate Value of Predefined Performance Metric and its Sensitivity to Controller Weights

Fix the random number generator seed for reproducibility.

rng(0)

Define a third-order plant model with three manipulated variables and two controlled outputs. Then
create an MPC controller for the plant, with sample time of 1.

plant = rss(3,2,3);
plant.D = 0;
mpcobj = mpc(plant,1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Specify an integral absolute error performance function and set the performance weights. The
performance weights emphasize tracking the first output variable.

PerfFunc = 'IAE';
PerfWts.OutputVariables = [2 0.5];

 sensitivity

2-205

PerfWts.ManipulatedVariables = zeros(1,3);
PerfWts.ManipulatedVariablesRate = zeros(1,3);

Define a 20 second simulation scenario with a unit step as setpoint for the first output and zero as a
setpoint for the second output.

Tstop = 20;
r = [1 0];

Calculate the closed-loop performance metric, J, and its sensitivities, sens, to the weights defined in
mpcobj, for the specified simulation scenario. For this example, do not specify the last three input
argument of sensitivity. This means that no disturbance signal or simulation option is used and
the nominal value of the manipulated variables is kept to its default value of zero.

[J,sens] = sensitivity(mpcobj,PerfFunc,PerfWts,Tstop,r)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

J = 2.1943

sens = struct with fields:
 OutputVariables: [0.0029 -0.1574]
 ManipulatedVariables: [0.0621 -0.1254 0.0989]
 ManipulatedVariablesRate: [0.5294 -0.3597 1.3742]

The positive, and relatively higher, values of the sensitivities to the first and last manipulated variable
rate suggest that decreasing the corresponding weights defined in mpcobj would contribute the most
to decrease the IAE performance metric defined by PerfWts. At the same time, since the sensitivity
to the weight of the second manipulated variable is negative, increasing the corresponding weight
would also contribute to decrease the performance metric.

Modify the manipulated variable rate weights in mpcobj and recalculate the value of the
performance metric.

mpcobj.Weights.ManipulatedVariablesRate = [1e-2 1 1e-2];
sensitivity(mpcobj,PerfFunc,PerfWts,Tstop,r)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

ans = 2.0053

As expected the value of the performance metric decreased, indicating an improved tracking
performance.

Calculate Value of Custom Performance Metric and its Sensitivity to Controller Weights

Define a third-order plant model with three manipulated variables and two controlled outputs. Then
create an MPC controller for the plant, with sample time of 1.

2 Functions

2-206

plant = rss(3,2,3);
plant.D = 0;
mpcobj = mpc(plant,1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Define a custom performance function and write it to a file. The function must take an MPC object as
a first input argument. The simulation time and the output set point are the second and third input
arguments, respectively. Internally, the function performs a closed loop simulation using the given
MPC object, simulation time and set point. The norm of the difference between the set point and the
output signal is then returned as the value of the performance metric (note that this norm depends on
the number of simulation steps).

% write a function to the char vector "str"
str = ['function J = mypfun(mpcobj,T,ySetPnt)', ...
 newline, ...
 'y = sim(mpcobj,T,ySetPnt); J = norm(ySetPnt-y);', ...
 newline, ...
 'end'];

% create the function file
fid=fopen('mypfun.m','w'); % open a file for writing
fwrite(fid,str,'char'); % write "str" to the file
fclose(fid); % close the file

Calculate the custom performance metric, J, and its sensitivities, sens, to the weights defined in
mpcobj, using a simulation time of 10 seconds and an output setpoint of [1 1].

[J,sens] = sensitivity(mpcobj,'mypfun',10,[1 1])

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

J = 1.4566

sens = struct with fields:
 OutputVariables: [0.0122 -0.0721]
 ManipulatedVariables: [0.0022 -0.0017 0.0033]
 ManipulatedVariablesRate: [0.1645 0.2025 0.2318]

The comparatively higher values of the sensitivities to the manipulated variable rates suggest that
decreasing the corresponding weights defined in mpcobj would contribute the most to decrease the
custom performance metric calculated in the function mypfun.

Input Arguments
MPCobj — Model predictive controller
MPC controller object

 sensitivity

2-207

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

PerfFcn — Performance metric function shape
'ISE' | 'IAE' | 'ITSE' | 'ITAE'

Performance metric function shape, specified as one of the following:

• 'ISE' (integral squared error), for which the performance metric is

J = ∑
i = 1

Ns
∑

j = 1

ny
(w j

yeyi j)
2 + ∑

j = 1

nu
[(w j

ueui j)
2 + (w j

ΔuΔui j)
2]

• 'IAE' (integral absolute error), for which the performance metric is

J = ∑
i = 1

Ns
∑

j = 1

ny
w j

yeyi j + ∑
j = 1

nu
(w j

ueui j + w j
ΔuΔui j)

• 'ITSE' (integral of time-weighted squared error), for which the performance metric is

J = ∑
i = 1

Ns
iΔt ∑

j = 1

ny
(w j

yeyi j)
2 + ∑

j = 1

nu
[(w j

ueui j)
2 + (w j

ΔuΔui j)
2]

• 'ITAE' (integral of time-weighted absolute error), for which the performance metric is

J = ∑
i = 1

Ns
iΔt ∑

j = 1

ny
w j

yeyi j + ∑
j = 1

nu
(w j

ueui j + w j
ΔuΔui j)

In these expressions, ny is the number of controlled outputs and nu is the number of manipulated
variables, eyij is the difference between output j and its setpoint (or reference) value at time interval i,
euij is the difference between the manipulated variable j and its target at time interval i.

The w parameters are nonnegative performance weights defined by the structure PerfWeights.
Example: 'ITAE'

PerfWeights — Performance function weights
MPCobj.Weights (default) | structure

Performance function weights w, specified as a structure with the following fields:

• OutputVariables — ny-element row vector that contains the w j
y values

• ManipulatedVariables — nu-element row vector that contains the w j
u values

• ManipulatedVariablesRate — nu-element row vector that contains the w j
Δu values

If PerfWeights is empty or unspecified, it defaults to the corresponding weights in MPCobj.

Note The performance index is not related to the quadratic cost function that the MPC controller
tries to minimize by choosing the values of the manipulated variables.

One clear difference is that the performance index is based on a closed loop simulation running until
a time that is generally different than the prediction horizon, while the MPC controller calculates the

2 Functions

2-208

moves which minimize its internal cost function up to the prediction horizon and in open loop fashion.
Furthermore, even when the performance index is chosen to be of ISE type, its weights should be
squared to match the weights defined in the MPC cost function.

Therefore, the performance weights and those used in the controller have different purposes; define
these weights accordingly.

Ns — Number of simulation steps
positive integer

Number of simulation steps, specified as a positive integer.

If you omit Ns, the default value is the row size of whichever of the following arrays has the largest
row size:

• The input argument r
• The input argument v
• The UnmeasuredDisturbance property of SimOptions, if specified
• The OutputNoise property of SimOptions, if specified

Example: 100

r — Reference signal
MPCobj.Model.Nominal.Y (default) | matrix

Reference signal, specified as an array. This array has ny columns, where ny is the number of plant
outputs. r can have anywhere from 1 to Ns rows. If the number of rows is less than Ns, the missing
rows are set equal to the last row.

If r is empty or unspecified, it defaults to the nominal value of the plant output,
MPCobj.Model.Nominal.Y.
Example: ones(100,1)

v — Measured disturbance signal
MPCobj.Model.Nominal.U(md) (default) | matrix

Measured disturbance signal, specified as an array. This array has nv columns, where nv is the
number of measured input disturbances. v can have anywhere from 1 to Ns rows. If the number of
rows is less than Ns, the missing rows are set equal to the last row.

If v is empty or unspecified, it defaults to the nominal value of the measured input disturbance,
MPCobj.Model.Nominal.U(md), where md is the vector containing the indices of the measured
disturbance signals, as defined by setmpcsignals.
Example: [zeros(50,1);ones(50,1)]

SimOptions — Simulation options object
[] (default) | mpcsimopt object

Use a simulation options objects to specify options such as noise and disturbance signals that feed
into the plant but are unknown to the controller. You can also use this object to specify an open loop
scenario, or a plant model in the loop that is different from the one in MPCobj.Model.Plant.

 sensitivity

2-209

For more information, see mpcsimopt.

utarget — Target for manipulated variables
MPCobj.Model.Nominal.U (default) | vector

The optional input utarget is a vector of nu manipulated variable targets. Their defaults are the
nominal values of the manipulated variables.
Example: [0.1;0;-0.2]

customPerFcn — Name of the custom performance function
character vector

Name of the custom performance function, specified as a character vector. The character vector must
be different than 'ISE', 'IAE', 'ITSE', or 'ITAE', and specify the name of a file in the MATLAB
path containing a custom function.

The custom function must have the following signature:

J = customPerFcn(MPCobj,Par1,...,ParN)

where J is a scalar indicating the value of the performance index MPCobj is an mpc object. The
remaining arguments Par1,...,ParN are parameters that, if needed by customPerFcn, you must
pass to sensitivity after the customPerFcn argument.

For example, inside customPerFcn, you can use MPCobj and, if needed, Par1,...,ParN, to
perform a simulation and calculate J based on the simulation results.
Example: 'myPerfFcn(mpcobj,Ts,Setpoint)'

Par1,...,ParN — Values of the parameters used by the custom performance function
values of any needed parameter

Values of the parameters used by the custom performance function customPerFcn, specified as
needed.
Example: 10,[1 1]

Output Arguments
J — Performance metric for the given controller
'double'

Depending on the PerfFcn argument, this performance measure can be a function of the integral
(time-weighted or not) of either the square or the absolute value or the (output and input) error. See
“PerfFcn” on page 2-0 for more detail.

sens — Sensitivity of the performance metric
structure

This structure contains and the numerical partial derivatives of the performance measure J with
respect to its diagonal weights. These partial derivatives, also called sensitivities, suggest weight
adjustments that should improve performance; that is, reduce J.

2 Functions

2-210

See Also
mpc | sim

Topics
“Adjust Input and Output Weights Based on Sensitivity Analysis”

Introduced in R2009a

 sensitivity

2-211

set
Set or modify MPC object properties

Syntax
set(MPCobj,Name,Value)
set(MPCobj,PropertyName)
set(MPCobj)

Description
Use the Model Predictive Control Toolbox set function to assign property values of an MPC
controller (see mpc for background).

To implement Get/Set interface of standard MATLAB object, see “Implement Set/Get Interface for
Properties”.

set(MPCobj,Name,Value) set properties of MPCobj using one or more Name,Value pair
arguments. For example, set(mpcobj,"ControlHorizon",4) assigns the value 3 to the
ControlHorizon property of the MPC controller MPCobj.

set(MPCobj,PropertyName) displays admissible values for the property specified by the character
vector Propertyname. See mpc for an overview of legitimate MPC property values.

set(MPCobj) displays all assignable properties of MPCobj and their admissible values.

Examples

Change Signal Types of Existing Controller

To modify the signal types for an existing MPC controller, you must simultaneously modify any
controller properties that depend on the signal type configuration.

Create a plant model with two outputs, one manipulated variable, one measured disturbance, and two
unmeasured disturbances.

plant = rss(3,2,5);
plant.D = 0;
plant = setmpcsignals(plant,'MV',[1 2],'MD',3,'UD',[4 5]);

Create an MPC controller using this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Configure the controller properties. For example, set the scaling factors for the disturbance signals.

2 Functions

2-212

MPCobj.DisturbanceVariables(1).ScaleFactor = 10;
MPCobj.DisturbanceVariables(2).ScaleFactor = 5;
MPCobj.DisturbanceVariables(3).ScaleFactor = 20;

Suppose you want to change the second unmeasured disturbance to be a measured disturbance. To
do so, you must simultaneously update the DisturbanceVariables property of the controller, since
the order of its entries depend on the disturbance types (measured disturbances followed by
unmeasured disturbances).

Create an updated disturbance variable structure array. To do so, move the third element to be the
second element.

DV = MPCobj.DisturbanceVariables;
DV = [DV(1) DV(3) DV(2)];
DV(2).Name = 'MD2';

To set the internal plant model signal types, obtain the Model property from the controller, and
modify the signal types of its Plant element.

model = MPCobj.Model;
model.Plant = setmpcsignals(model.Plant,'MV',[1 2],'MD',[3 5],'UD',4);

Set the model and disturbance variable properties of the controller to their updated values.

set(MPCobj,'Model',model,'DisturbanceVariables',DV);

In general, it is best practice to not modify the signal types after controller creation. Instead, create
and configure a new controller object with the new signal configuration.

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

PropertyName — Name of the property to be assigned
character array (default) | string

PropertyName can be the full property name (for example, 'UserData') or any unambiguous case-
insensitive abbreviation (for example, 'user').
Example: 'PredictionHorizon'

See Also
mpc | get | mpcprops

Introduced before R2006a

 set

2-213

setconstraint
Set mixed input/output constraints for model predictive controller

Syntax
setconstraint(MPCobj,E,F,G)
setconstraint(MPCobj,E,F,G,V)
setconstraint(MPCobj,E,F,G,V,S)

setconstraint(MPCobj)

Description
setconstraint(MPCobj,E,F,G) specifies mixed input/output constraints of the following form for
the MPC controller, MPCobj:

Eu(k + j|k) + Fy(k + j|k) ≤ G + ε

For more information, see “Mixed Input/Output Constraints” on page 2-218.

setconstraint(MPCobj,E,F,G,V) adds constraints of the following form:

Eu(k + j|k) + Fy(k + j|k) ≤ G + εV

Use this syntax to specify hard custom constraints or to change the default constraint softening.

setconstraint(MPCobj,E,F,G,V,S) adds constraints of the following form:

Eu(k + j|k) + Fy(k + j|k) + Sv(k + j|k) ≤ G + εV

Use this syntax if your mixed input/output constraints include measured disturbances.

setconstraint(MPCobj) removes all mixed input/output constraints from the MPC controller.

Examples

Specify Custom Constraints on Linear Combination of Inputs and Outputs

Specify a constraint of the form 0 ≤ u2− 2u3 + y2 ≤ 15 on an MPC controller.

Create a third-order plant model with three manipulated variables and two measured outputs.

plant = rss(3,2,3);
plant.D = 0;

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.

2 Functions

2-214

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Formulate the constraint in the required form:

0 −1 2
0 1 −2

u1
u2
u3

+
0 −1
0 1

y1
y2

≤
0
15

+ ε
1
1

Specify the constraint matrices.

E = [0 -1 2;0 1 -2];
F = [0 -1;0 1];
G = [0;15];

Set the constraints in the MPC controller.

setconstraint(MPCobj,E,F,G)

Specify Custom Hard Constraints for MPC Controller

Create a third-order plant model with two manipulated variables and two measured outputs.

plant = rss(3,2,2);
plant.D = 0;

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Assume that you have two hard constraints.

u1 + u2 ≤ 5
y1 + y2 ≤ 10

Specify the constraint matrices.

E = [1 1; 0 0];
F = [0 0; 1 1];
G = [5;10];

Specify the constraints as hard by setting V to zero for both constraints.

V = [0;0];

Set the constraints in the MPC controller.

setconstraint(MPCobj,E,F,G,V)

 setconstraint

2-215

Specify Custom Constraints for MPC Controller with Measured Disturbances

Create a third-order plant model with two manipulated variables, two measured disturbances, and
two measured outputs.

plant = rss(3,2,4);
plant.D = 0;
plant = setmpcsignals(plant,'mv',[1 2],'md',[3 4]);

Create an MPC controller for this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Assume that you have three soft constraints.

u1 + u2 ≤ 5
y1 + v1 ≤ 10
y2 + v2 ≤ 12

Specify the constraint matrices.

E = [1 1; 0 0; 0 0];
F = [0 0; 1 0; 0 1];
G = [5;10;12];
S = [0 0; 1 0; 0 1];

Set the constraints in the MPC controller using the default value for V.

setconstraint(MPCobj,E,F,G,[],S)

Remove All Custom Constraints from MPC Controller

Define a plant model and create an MPC controller.

plant = rss(3,2,2);
plant.D = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Define controller custom constraints.

2 Functions

2-216

E = [-1 2; 1 -2];
F = [0 1; 0 -1];
G = [0; 10];
setconstraint(MPCobj,E,F,G)

Remove the custom constraints.

setconstraint(MPCobj)

-->Removing mixed input/output constraints.

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

E — Manipulated variable constraint constant
array of zeros (default) | Nc-by-Nmv array

Manipulated variable constraint constant, specified as an Nc-by-Nmv array, where Nc is the number of
constraints, and Nmv is the number of manipulated variables.

F — Controlled output constraint constant
array of zeros (default) | Nc-by-Ny array

Controlled output constraint constant, specified as an Nc-by-Ny array, where Ny is the number of
controlled outputs (measured and unmeasured).

G — Mixed input/output constraint constant
column vector of zeros (default) | column vector of length Nc

Mixed input/output constraint constant, specified as a column vector of length Nc.

V — Constraint softening constant
column vector of ones (default) | specified as a column vector of length Nc

Constraint softening constant representing the equal concern for the relaxation (ECR), specified as a
column vector of length Nc.

If V is not specified, a default value of 1 is applied to all constraint inequalities and all constraints are
soft. This behavior is the same as the default behavior for output bounds, as described in “Standard
Cost Function”.

To make the ith constraint hard, specify V(i) = 0.

To make the ith constraint soft, specify V(i) > 0 in keeping with the constraint violation magnitude you
can tolerate. The magnitude violation depends on the numerical scale of the variables involved in the
constraint.

In general, as V(i) decreases, the controller hardens the constraints by decreasing the constraint
violation that is allowed.

 setconstraint

2-217

Note If a constraint is difficult to satisfy, reducing its V(i) value to make it harder can be
counterproductive. Doing so can lead to erratic control actions, instability, or failure of the QP solver
that determines the control action.

S — Measured disturbance constraint constant
array of zeros (default) | Nc-by-Nmd array

Measured disturbance constraint constant, specified as an Nc-by-Nmd array, where Nmd is the number
of measured disturbances.

Tips
• The outputs, y, are being predicted using a model. If the model is imperfect, there is no guarantee

that a constraint can be satisfied.
• Since the MPC controller does not optimize u(k + p|k), the last constraint at time k + p assumes

that u(k+p|k) = u(k+p–1|k).
• When simulating an MPC controller, you can update the E, F, G, and S constraint arrays at run

time. For more information, see “Update Constraints at Run Time”.

Algorithms
Mixed Input/Output Constraints

The general form of the mixed input/output constraints is:
Eu(k + j) + Fy(k + j) + Sv(k + j) ≤ G + εV

Here, j = 0,...,p, and:

• p is the prediction horizon.
• k is the current time index.
• u is a column vector manipulated variables.
• y is a column vector of all plant output variables.
• v is a column vector of measured disturbance variables.
• ε is a scalar slack variable used for constraint softening (as in “Standard Cost Function”).
• E, F, G, V, and S are constant matrices.

See Also
getconstraint | setterminal

Topics
“Constraints on Linear Combinations of Inputs and Outputs”
“Update Constraints at Run Time”

Introduced in R2011a

2 Functions

2-218

setCustomSolver
Configures an MPC object to use the QP solver from Optimization Toolbox as a custom solver

Syntax
setCustomSolver(mpcobj,'quadprog')
setCustomSolver(mpcobj,'none')

Description
setCustomSolver(mpcobj,'quadprog') configures mpcobj to use quadprog from Optimization
Toolbox™ as a custom QP solver for both simulation and code generation. Specifically, this syntax
generates, in the current folder, the files mpcCustomSolver.m and mpcCustomSolverCodeGen.m,
which internally call the active-set quadprog solver. It then sets
mpcobj.Optimizer.CustomSolver and mpcobj.Optimizer.CustomSolverCodeGen to true.

setCustomSolver(mpcobj,'none') sets mpcobj.Optimizer.CustomSolver and
mpcobj.Optimizer.CustomSolverCodeGen to false, thereby reverting mpcobj back to use the
built-in algorithm specified in mpcobj.Optimizer.Algorithm for both simulation and code
generation.

Examples

Set quadprog as Custom MPC Solver Using setCustomSolver

This example shows how to use the setCustomSolver function to automatically configure an mpc
object to use the Optimization Toolbox™ quadprog function as custom MPC solver for both
simulation and code generation.

Create an mpc object.

mpcobj = mpc(tf(1,[2 1],0.1));

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

As a default, the controller is set to use the active-set solver for both simulation and code generation.

mpcobj.Optimizer

ans = struct with fields:
 Algorithm: 'active-set'
 ActiveSetOptions: [1x1 struct]
 InteriorPointOptions: [1x1 struct]
 MixedIntegerOptions: [1x1 struct]
 MinOutputECR: 0
 UseSuboptimalSolution: 0

 setCustomSolver

2-219

 CustomSolver: 0
 CustomSolverCodeGen: 0

Configure mpcobj to Use quadprog as Custom Solver

To set the quadprog function as custom MPC solver for both simulation and code generation, call
setCustomSolver with 'quadprog' as second argument.

setCustomSolver(mpcobj,'quadprog')

The function generates, in the current folder, the files mpcCustomSolver.m and
mpcCustomSolverCodeGen.m. To display the MATLAB files in the current folder, use the ls
command.

ls *.m

mpcCustomSolver.m mpcCustomSolverCodeGen.m

To display the content of mpcCustomSolver.m, and mpcCustomSolverCodeGen.m use the type
command. Both files internally call quadprog, which is configured to use the active-set solver, as
other algorithms are not supported.

type mpcCustomSolver

function [x, status] = mpcCustomSolver(H, f, A, b, x0)
% "mpcCustomSolver" enables using "quadprog" from Optmization Toolbox
% as a custom QP solver with linear MPC controller for simulation.

%% Specify solver algorithm and options
options = optimoptions('quadprog','Algorithm','active-set');
if coder.target('MATLAB')
 options.Display = 'none';
end
%% Process solver inputs
% Use -A and -b in "quadprog" because MPC QP uses Ax>=b instead
A_custom = -A;
b_custom = -b;
% ensure Hessian is symmetric
H = (H+H')/2;
%% Call "quadprog"
[x, ~, exitflag, output] = quadprog(H, f, A_custom, b_custom, [], [], [], [], x0, options);
%% Converts exit flag to MPC "status"
switch exitflag
 case 1
 status = output.iterations;
 case 0
 status = 0;
 case -2
 status = -1;
 otherwise
 status = -2;
end
%% If "quadprog" fails to find a solution, set x to the initial guess
if status <= 0
 x = x0;
end

type mpcCustomSolverCodeGen.m

2 Functions

2-220

function [x, status] = mpcCustomSolverCodeGen(H, f, A, b, x0)
% "mpcCustomSolverCodeGen" enables using "quadprog" from Optmization
% Toolbox as a custom QP solver with linear MPC controller for code generation.

%#codegen
%% Specify solver algorithm (must be "active-set") and options
options = optimoptions('quadprog','Algorithm','active-set');
if coder.target('MATLAB')
 options.Display = 'none';
end
%% Process solver inputs
% Use -A and -b in "quadprog" because MPC QP uses Ax>=b instead
A_custom = -A;
b_custom = -b;
% ensure Hessian is symmetric
H = (H+H')/2;
%% Call "quadprog"
[x, ~, exitflag, output] = quadprog(H, f, A_custom, b_custom, [], [], [], [], x0, options);
%% Converts exit flag to MPC "status"
switch exitflag
 case 1
 status = output.iterations;
 case 0
 status = 0;
 case -2
 status = -1;
 otherwise
 status = -2;
end
%% If "quadprog" fails to find a solution, set x to the initial guess
if status <= 0
 x = x0;
end

The setCustomSolver function also sets mpcobj.Optimizer.CustomSolver and
mpcobj.Optimizer.CustomSolverCodeGen to true, thereby setting up the mpcobj object to use
the custom solver in the related files for simulation and code generation.

mpcobj.Optimizer

ans = struct with fields:
 Algorithm: 'active-set'
 ActiveSetOptions: [1x1 struct]
 InteriorPointOptions: [1x1 struct]
 MixedIntegerOptions: [1x1 struct]
 MinOutputECR: 0
 UseSuboptimalSolution: 0
 CustomSolver: 1
 CustomSolverCodeGen: 1

Revert mpcobj to Use a Built-In Solver

To revert mpcobj back to use a built in solver, call setCustomSolver function with 'none' as
second argument.

setCustomSolver(mpcobj,'none')

 setCustomSolver

2-221

This sets mpcobj.Optimizer.CustomSolver and mpcobj.Optimizer.CustomSolverCodeGen
to false.

mpcobj.Optimizer

ans = struct with fields:
 Algorithm: 'active-set'
 ActiveSetOptions: [1x1 struct]
 InteriorPointOptions: [1x1 struct]
 MixedIntegerOptions: [1x1 struct]
 MinOutputECR: 0
 UseSuboptimalSolution: 0
 CustomSolver: 0
 CustomSolverCodeGen: 0

The controller will now use the active-set built in solver for both simulation and code generation.

Input Arguments
mpcobj — MPC controller
MPC controller object

MPC controller, specified as an MPC controller object. Use the mpc command to create the MPC
controller.

See Also
mpc | quadprog | mpcActiveSetSolver | mpcInteriorPointSolver

Topics
“Simulate MPC Controller with a Custom QP Solver”
“Simulate and Generate Code for MPC Controller with Custom QP Solver”
“Optimization Problem”
“QP Solvers”
active-set quadprog Algorithm (Optimization Toolbox)

Introduced in R2021b

2 Functions

2-222

setEstimator
Modify a model predictive controller’s state estimator

Syntax
setEstimator(MPCobj,L,M)
setEstimator(MPCobj,'default')
setEstimator(MPCobj,'custom')

Description
setEstimator(MPCobj,L,M) sets the gain matrices used for estimation of the states of an MPC
controller. For more information, see “State Estimator Equations” on page 2-225.

setEstimator(MPCobj,'default') restores the gain matrices L and M to their default values. The
default values are the optimal static gains calculated using kalmd for the plant, disturbance, and
measurement noise models specified in MPCobj.

setEstimator(MPCobj,'custom') specifies that controller state estimation will be performed by
a user-supplied procedure. This option suppresses calculation of L and M. When the controller is
operating in this way, the procedure must supply the state estimate x[n|n] to the controller at the
beginning of each control interval.

Examples

Design State Estimator by Pole Placement

Design an estimator using pole placement, assuming the linear system AM = L is solvable.

Create a plant model.

G = tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]});

To improve the clarity of this example, call mpcverbosity to suppress messages related to working
with an MPC controller.

old_status = mpcverbosity('off');

Create a model predictive controller for the plant. Specify the controller sample time as 0.2 seconds.

MPCobj = mpc(G, 0.2);

Obtain the default state estimator gain.

[~,M,A1,Cm1] = getEstimator(MPCobj);

Calculate the default observer poles.

e = eig(A1-A1*M*Cm1);
abs(e)

 setEstimator

2-223

ans = 6×1

 0.9402
 0.9402
 0.8816
 0.8816
 0.7430
 0.9020

Specify faster observer poles.

new_poles = [.8 .75 .7 .85 .6 .81];

Compute a state-gain matrix that places the observer poles at new_poles.

L = place(A1',Cm1',new_poles)';

place returns the controller-gain matrix, whereas you want to compute the observer-gain matrix.
Using the principle of duality, which relates controllability to observability, you specify the transpose
of A1 and Cm1 as the inputs to place. This function call yields the observer gain transpose.

Obtain the estimator gain from the state-gain matrix.

M = A1\L;

Specify M as the estimator for MPCobj.

setEstimator(MPCobj,L,M)

The pair, (A1, Cm1), describing the overall state-space realization of the combination of plant and
disturbance models must be observable for the state estimation design to succeed. Observability is
checked in Model Predictive Control Toolbox software at two levels: (1) observability of the plant
model is checked at construction of the MPC object, provided that the model of the plant is given in
state-space form; (2) observability of the overall extended model is checked at initialization of the
MPC object, after all models have been converted to discrete-time, delay-free, state-space form and
combined together.

Restore mpcverbosity.

mpcverbosity(old_status);

Input Arguments
MPCobj — MPC controller
MPC controller object

MPC controller, specified as an MPC controller object. Use the mpc command to create the MPC
controller.

L — Kalman gain matrix for time update
A*M (default) | matrix

Kalman gain matrix for the time update, specified as a matrix. The dimensions of L are nx-by-nym,
where nx is the total number of controller states, and nym is the number of measured outputs.

2 Functions

2-224

If L is empty, it defaults to L = A*M, where A is the state-transition matrix.

M — Kalman gain matrix for measurement update
0 (default) | matrix

Kalman gain matrix for the measurement update, specified as a matrix. The dimensions of L are nx-by-
nym, where nx is the total number of controller states, and nym is the number of measured outputs.

If M is omitted or empty, it defaults to a zero matrix, and the state estimator becomes a Luenberger
observer.

Algorithms
State Estimator Equations

In general, the controller states are unmeasured and must be estimated. By default, the controller
uses a steady-state Kalman filter that derives from the state observer. For more information, see
“Controller State Estimation”.

At the beginning of the kth control interval, the controller state is estimated with the following steps:

1 Obtain the following data:

• xc(k|k–1) — Controller state estimate from previous control interval, k–1
• uact(k–1) — Manipulated variable (MV) actually used in the plant from k–1 to k (assumed

constant)
• uopt(k–1) — Optimal MV recommended by MPC and assumed to be used in the plant from k–1

to k
• v(k) — Current measured disturbances
• ym(k) — Current measured plant outputs
• Bu, Bv — Columns of observer parameter B corresponding to u(k) and v(k) inputs
• Cm — Rows of observer parameter C corresponding to measured plant outputs
• Dmv — Rows and columns of observer parameter D corresponding to measured plant outputs

and measured disturbance inputs
• L, M — Constant Kalman gain matrices

Plant input and output signals are scaled to be dimensionless prior to use in calculations.
2 Revise xc(k|k–1) when uact(k–1) and uopt(k–1) are different.

xc
rev k |k− 1 = xc k |k− 1 + Bu uact k− 1 − uopt k− 1

3 Compute the innovation.

e k = ym k − Cmxc
rev k |k− 1 + Dmvv k

4 Update the controller state estimate to account for the latest measurements.

xc k |k = xc
rev k |k− 1 + Me k

Then, the software uses the current state estimate xc(k|k) to solve the quadratic program at
interval k. The solution is uopt(k), the MPC-recommended manipulated-variable value to be used
between control intervals k and k+1.

 setEstimator

2-225

Finally, the software prepares for the next control interval assuming that the unknown inputs,
wid(k), wod(k), and wn(k) assume their mean value (zero) between times k and k+1. The software
predicts the impact of the known inputs and the innovation as follows:

xc k + 1 k = Axc
rev k k− 1 + Buuopt k + Bvv k + Le k

See Also
getEstimator | mpc | mpcstate | kalman

Topics
“Controller State Estimation”
“MPC Prediction Models”

Introduced in R2014b

2 Functions

2-226

setindist
Modify unmeasured input disturbance model

Syntax
setindist(MPCobj,'model',model)
setindist(MPCobj,'integrators')

Description
setindist(MPCobj,'model',model) sets the input disturbance model used by the model
predictive controller, MPCobj, to a custom model.

setindist(MPCobj,'integrators') sets the input disturbance model to its default value. Use
this syntax if you previously set a custom input disturbance model and you want to change back to
the default model. For more information on the default input disturbance model, see “MPC Prediction
Models”.

Examples

Specify Input Disturbance Model Using Transfer Functions

Define a plant model with no direct feedthrough.

plant = rss(3,4,4);
plant.D = 0;

Set the first input signal as a manipulated variable and the remaining inputs as input disturbances.

plant = setmpcsignals(plant,'MV',1,'UD',[2 3 4]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2 y3 y4

Define disturbance models such that:

• Input disturbance 1 is random white noise with a magnitude of 2.
• Input disturbance 2 is random step-like noise with a magnitude of 0.5.
• Input disturbance 3 is random ramp-like noise with a magnitude of 1.

mod1 = tf(2,1);
mod2 = tf(0.5,[1 0]);
mod3 = tf(1,[1 0 0]);

 setindist

2-227

Construct the input disturbance model using the above transfer functions. Use a separate noise input
for each input disturbance.

indist = [mod1 0 0; 0 mod2 0; 0 0 mod3];

Set the input disturbance model in the MPC controller.

setindist(MPCobj,'model',indist)

View the controller input disturbance model.

getindist(MPCobj)

ans =

 A =
 x1 x2 x3
 x1 1 0 0
 x2 0 1 0
 x3 0 0.1 1

 B =
 Noise#1 Noise#2 Noise#3
 x1 0 0.05 0
 x2 0 0 0.1
 x3 0 0 0.005

 C =
 x1 x2 x3
 UD1 0 0 0
 UD2 1 0 0
 UD3 0 0 1

 D =
 Noise#1 Noise#2 Noise#3
 UD1 2 0 0
 UD2 0 0 0
 UD3 0 0 0

Sample time: 0.1 seconds
Discrete-time state-space model.

The controller converts the continuous-time transfer function model, indist, into a discrete-time
state-space model.

Remove Input Disturbance for Particular Channel

Define a plant model with no direct feedthrough.

plant = rss(3,4,4);
plant.D = 0;

Set the first input signal as a manipulated variable and the remaining inputs as input disturbances.

plant = setmpcsignals(plant,'MV',1,'UD',[2 3 4]);

2 Functions

2-228

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2 y3 y4

Retrieve the default input disturbance model from the controller.

distMod = getindist(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #2 is integrated white noise.
 Assuming unmeasured input disturbance #3 is integrated white noise.
 Assuming unmeasured input disturbance #4 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
 Assuming no disturbance added to measured output channel #2.
 Assuming no disturbance added to measured output channel #3.
 Assuming no disturbance added to measured output channel #4.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Remove the integrator from the second input disturbance. Construct the new input disturbance
model by removing the second input channel and setting the effect on the second output by the other
two inputs to zero.

distMod = sminreal([distMod(1,1) distMod(1,3); 0 0; distMod(3,1) distMod(3,3)]);
setindist(MPCobj,'model',distMod)

When removing an integrator from the input disturbance model in this way, use sminreal to make
the custom model structurally minimal.

View the input disturbance model.

tf(getindist(MPCobj))

ans =

 From input "UD1-wn" to output...
 0.1
 UD1: -----
 z - 1

 UD2: 0

 UD3: 0

 From input "UD3-wn" to output...
 UD1: 0

 UD2: 0

 0.1
 UD3: -----
 z - 1

 setindist

2-229

Sample time: 0.1 seconds
Discrete-time transfer function.

The integrator has been removed from the second channel. The first and third channels of the input
disturbance model remain at their default values as discrete-time integrators.

Set Input Disturbance Model to Default Value

Define a plant model with no direct feedthrough.

plant = rss(2,2,3);
plant.D = 0;

Set the second and third input signals as input disturbances.

plant = setmpcsignals(plant,'MV',1,'UD',[2 3]);

Create an MPC controller for the defined plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

Set the input disturbance model to unity gain for both channels.

setindist(MPCobj,'model',tf(eye(2)))

Restore the default input disturbance model.

setindist(MPCobj,'integrators')

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

model — Custom input disturbance model
[] (default) | ss object | tf object | zpk object

Custom input disturbance model, specified as a state-space (ss), transfer function (tf), or zero-pole-
gain (zpk) model. The MPC controller converts the model to a discrete-time, delay-free, state-space
model. Omitting model or specifying model as [] is equivalent to using
setindist(MPCobj,'integrators').

The input disturbance model has:

2 Functions

2-230

• Unit-variance white noise input signals. For custom input disturbance models, the number of
inputs is your choice.

• nd outputs, where nd is the number of unmeasured disturbance inputs defined in
MPCobj.Model.Plant. Each disturbance model output is sent to the corresponding plant
unmeasured disturbance input.

This model, in combination with the output disturbance model (if any), governs how well the
controller compensates for unmeasured disturbances and prediction errors. For more information on
the disturbance modeling in MPC and about the model used during state estimation, see “MPC
Prediction Models” and “Controller State Estimation”.

setindist does not check custom input disturbance models for violations of state observability. This
check is performed later in the MPC design process when the internal state estimator is constructed
using commands such as sim or mpcmove. If the controller states are not fully observable, these
commands generate an error.

This syntax is equivalent to MPCobj.Model.Disturbance = model.

Tips
• To view the current input disturbance model, use the getindist command.

See Also
mpc | getoutdist | getindist | setoutdist | setEstimator | getEstimator

Topics
“MPC Prediction Models”
“Controller State Estimation”
“Adjust Disturbance and Noise Models”

Introduced before R2006a

 setindist

2-231

setmpcsignals
Set signal types in LTI plant model

Syntax
outPlant = setmpcsignals(inPlant)
outPlant = setmpcsignals(inPlant,Name,Value)

Description
outPlant = setmpcsignals(inPlant) sets the MPC signal types of inPlant to their default
values, returning the result in outPlant. By default, all inputs are manipulated variables, and all
outputs are measured outputs.

outPlant = setmpcsignals(inPlant,Name,Value) sets the MPC signal types for the input and
output signals of the LTI system inPlant, returning the result in outPlant. Specify the signal types
and indices using one or more name-value pair arguments. If you do not specify the type for input or
output channels, they are configured as manipulated variables and output variables, respectively.

Examples

Set MPC Signal Types and Create MPC Controller

Create a four-input, two output state-space plant model. By default all input signals are manipulated
variables and all outputs are measured outputs.

plant = rss(3,2,4);
plant.D = 0;

Configure the plant input/output channels such that:

• The second and third inputs are measured disturbances.
• The fourth input is an unmeasured disturbance.
• The second output is unmeasured.

plant = setmpcsignals(plant,'MD',[2 3],'UD',4,'UO',2);

-->Assuming unspecified input signals are manipulated variables.
-->Assuming unspecified output signals are measured outputs.

Create an MPC controller.

MPCobj = mpc(plant,1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

2 Functions

2-232

Change Signal Types of Existing Controller

To modify the signal types for an existing MPC controller, you must simultaneously modify any
controller properties that depend on the signal type configuration.

Create a plant model with two outputs, one manipulated variable, one measured disturbance, and two
unmeasured disturbances.

plant = rss(3,2,5);
plant.D = 0;
plant = setmpcsignals(plant,'MV',[1 2],'MD',3,'UD',[4 5]);

Create an MPC controller using this plant.

MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Configure the controller properties. For example, set the scaling factors for the disturbance signals.

MPCobj.DisturbanceVariables(1).ScaleFactor = 10;
MPCobj.DisturbanceVariables(2).ScaleFactor = 5;
MPCobj.DisturbanceVariables(3).ScaleFactor = 20;

Suppose you want to change the second unmeasured disturbance to be a measured disturbance. To
do so, you must simultaneously update the DisturbanceVariables property of the controller, since
the order of its entries depend on the disturbance types (measured disturbances followed by
unmeasured disturbances).

Create an updated disturbance variable structure array. To do so, move the third element to be the
second element.

DV = MPCobj.DisturbanceVariables;
DV = [DV(1) DV(3) DV(2)];
DV(2).Name = 'MD2';

To set the internal plant model signal types, obtain the Model property from the controller, and
modify the signal types of its Plant element.

model = MPCobj.Model;
model.Plant = setmpcsignals(model.Plant,'MV',[1 2],'MD',[3 5],'UD',4);

Set the model and disturbance variable properties of the controller to their updated values.

set(MPCobj,'Model',model,'DisturbanceVariables',DV);

In general, it is best practice to not modify the signal types after controller creation. Instead, create
and configure a new controller object with the new signal configuration.

 setmpcsignals

2-233

Input Arguments
inPlant — Input plant model
LTI model | identified linear model

Input plant model, specified as either an LTI model or a linear System Identification Toolbox model.

Name-Value Pair Arguments

Specify optional pairs of arguments as Name1=Value1,...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.
Example: 'UnmeasuredDisturbances',[2 3] configures the second and third input arguments as
measured disturbances

ManipulatedVariables — Manipulated variable indices
vector of positive integers

Manipulated variable indices, specified as the comma-separated pair 'ManipulatedVariables'
followed by a vector of positive integers. The maximum index value must not exceed the number of
input channels in inPlant. The indices specified using ManipulatedVariables,
MeasuredDisturbances, and UnmeasuredDisturbances must not overlap.

Instead of 'ManipulatedVariables', you can use the abbreviation 'MV'.

MeasuredDisturbances — Measured disturbance indices
vector of positive integers

Measured disturbance indices, specified as the comma-separated pair 'MeasuredDisturbances'
followed by a vector of positive integers. The maximum index value must not exceed the number of
input channels in inPlant. The indices specified using ManipulatedVariables,
MeasuredDisturbances, and UnmeasuredDisturbances must not overlap.

Instead of 'MeasuredDisturbances', you can use the abbreviation 'MD'.

UnmeasuredDisturbances — Unmeasured disturbance indices
vector of positive integers

Unmeasured disturbance indices, specified as the comma-separated pair
'UnmeasuredDisturbances' followed by a vector of positive integers. The maximum index value
must not exceed the number of input channels in inPlant. The indices specified using
ManipulatedVariables, MeasuredDisturbances, and UnmeasuredDisturbances must not
overlap.

Instead of 'UnmeasuredDisturbances', you can use the abbreviation 'UD'.

MeasuredOutputs — Measured output indices
vector of positive integers

Measured output indices, specified as the comma-separated pair 'MeasuredOutputs' followed by a
vector of positive integers. The maximum index value must not exceed the number of output channels
in inPlant. The indices specified using MeasuredOutputs and UnmeasuredOutputs must not
overlap.

2 Functions

2-234

Instead of 'MeasuredOutputs', you can use the abbreviation 'MO'.

UnmeasuredOutputs — Unmeasured output indices
vector of positive integers

Unmeasured output indices, specified as the comma-separated pair 'UnmeasuredOutputs' followed
by a vector of positive integers. The maximum index value must not exceed the number of output
channels in inPlant. The indices specified using MeasuredOutputs and UnmeasuredOutputs
must not overlap.

Instead of 'UnmeasuredOutputs', you can use the abbreviation 'UO'.

Output Arguments
outPlant — Output plant model
linear dynamic model

Output plant model, returned as a linear dynamic model. outPlant has the specified input and
output channel types. Otherwise, outPlant is identical to inPlant.

Tips
In general, set the plant signal types using setmpcsignals before creating your controller object.

If you modify the signal types of the internal plant model of an existing controller, you must ensure
that the new input/output channel types are consistent with the following controller properties:

• Weights
• ManipulatedVariables
• OutputVariables
• DisturbanceVariables
• Model.Noise

See Also
mpc | set | getname | setname

Topics
“MPC Signal Types”
“MPC Prediction Models”

Introduced before R2006a

 setmpcsignals

2-235

setname
Set I/O signal names in MPC plant model

Syntax
setname(MPCobj,'input',i,name)
setname(MPCobj,'output',i,name)

Description
setname(MPCobj,'input',i,name) changes the name of the ith input signal in MPCobj to name.
This is equivalent to MPCobj.Model.Plant.InputName{i}=name, and both commands and also
update the read-only Name field of the corresponding structure in MPCobj.ManipulatedVariables
(if the input is a manipulate variable), or MPCobj.DisturbanceVariables (if the input is a
disturbance variable).

setname(MPCobj,'output',i,name) changes the name of the ith output signal in MPCobj to
name. This is equivalent to MPCobj.Model.Plant.OutputName{i} =name, and both commands
and also update the read-only Name field of the corresponding structure in
MPCobj.OutputVariables.

Examples

Set names of input and output signals in MPC object

Create a plant and an MPC object, and then set the names of some input and output signals.

mpcverbosity off; % turn off mpc messages

% create plant model
plant = rss(4,4,4); % random state space
plant.D = 0; % set D matrix to zero

% set signals type in plant model
plant = setmpcsignals(plant,'MV',1,'MD',3,'UD',4,'MO',1,'UO',[3 4]);

% create MPC object
mpcobj=mpc(plant,1); % sampling time = 1 second

Set names of input signals

% set input signal names
setname(mpcobj,'input',1,'Jim') % set name of first input signal
setname(mpcobj,'input',2,'Joe') % set name of second input signal
setname(mpcobj,'input',3,'Jeff') % set name of third input signal

Check names of input signals

% get input signal names
getname(mpcobj,'input',2) % get name of second input signal

2 Functions

2-236

ans =
 'Joe'

% alternatively
mpcobj.ManipulatedVariables(2).Name
ans =
 'Joe'

mpcobj.DisturbanceVariables(1).Name
ans =
 'Jeff'

mpcobj.Model.Plant.InputName{3}
ans =
 'Jeff'

mpcobj.Model.Plant.InputName
ans =
 4×1 cell array
 {'Jim' }
 {'Joe' }
 {'Jeff'}
 {'UD1' }

Set and check names of output signals

% set output signal names
setname(mpcobj,'output',1,'Laura') % set name of first output signal
setname(mpcobj,'output',2,'Diana') % set name of second output signal
setname(mpcobj,'output',3,'Emily') % set name of third output signal

% get output signal names
getname(mpcobj,'output',2) % get name of second input signal
ans =
 'Diana'

% alternatively
mpcobj.OutputVariables(2).Name
ans =
 'Diana'

mpcobj.Model.Plant.OutputName{2}
ans =
 'Diana'

mpcobj.Model.Plant.OutputName
ans =
 4×1 cell array
 {'Laura'}
 {'Diana'}
 {'Emily'}
 {'UO2' }

 setname

2-237

Note that signals not specified with setmpcsignals are assumed to be measured inputs (for non-
specified inputs) or measured outputs (for non-specified outputs).

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

i — Signal number selection
'integer' greater than zero

This integer specify that the name of the ith signal needs to be set.

Signal number to be set.
Example: 2

name — Name to be assigned to the specified signal
character array | string

This is the name to be assigned to the ith input or output signal in MPCobj. This does not affect
whether the signal is categorized as a manipulated variable, measured or unmeasured disturbance,
measured or unmeasured output.

For input signals name replaces the content of MPCobj.Model.Plant.InputName{i}, as well as
the read-only Name field of the corresponding structure in MPCobj.ManipulatedVariables (if the
input is a manipulate variable), or MPCobj.DisturbanceVariables (if the input is a disturbance
variable).

For output signals name replaces the content of MPCobj.Model.Plant.OutputName{i}, as well as
the read-only Name field of the corresponding structure in MPCobj.OutputVariables.

Tips

Note The Name fields of the variable-related structures in ManipulatedVariables,
OutputVariables, and DisturbanceVariables in MPCobj are read-only. You must use setname
to assign signal names, or equivalently modify the Model.Plant.InputName and
Model.Plant.OutputName properties of the MPC object.

Note Neither of the Name properties for the signals in MPCobj affects whether the signal is
categorized as a manipulated variable, measured or unmeasured disturbance, measured or
unmeasured output. To change the signal type you need to either reassign it using setmpcsignal on
the plant object, and recreate the MPC object for that plant, or you need to recreate all the affected
controller signal structures and use set to assign them to the MPC object (not recommended).

See Also
getname | mpc | setmpcsignals | set

2 Functions

2-238

Introduced before R2006a

 setname

2-239

setoutdist
Modify unmeasured output disturbance model

Syntax
setoutdist(MPCobj,'model',model)
setoutdist(MPCobj,'integrators')

Description
setoutdist(MPCobj,'model',model) sets the output disturbance model used by the model
predictive controller, MPCobj, to a custom model.

setoutdist(MPCobj,'integrators') sets the output disturbance model to its default value. Use
this syntax if you previously set a custom output disturbance model and you want to change back to
the default model. For more information on the default output disturbance model, see “MPC
Prediction Models”.

Examples

Specify Output Disturbance Model Using Transfer Functions

Define a plant model with no direct feedthrough, and create an MPC controller for that plant.

plant = rss(3,3,3);
plant.D = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Define disturbance models for each output such that the output disturbance for:

• Channel 1 is random white noise with a magnitude of 2.
• Channel 2 is random step-like noise with a magnitude of 0.5.
• Channel 3 is random ramp-like noise with a magnitude of 1.

mod1 = tf(2,1);
mod2 = tf(0.5,[1 0]);
mod3 = tf(1,[1 0 0]);

Construct the output disturbance model using these transfer functions. Use a separate noise input for
each output disturbance.

outdist = [mod1 0 0; 0 mod2 0; 0 0 mod3];

Set the output disturbance model in the MPC controller.

2 Functions

2-240

setoutdist(MPCobj,'model',outdist)

View the controller output disturbance model.

getoutdist(MPCobj)

ans =

 A =
 x1 x2 x3
 x1 1 0 0
 x2 0 1 0
 x3 0 0.1 1

 B =
 Noise#1 Noise#2 Noise#3
 x1 0 0.05 0
 x2 0 0 0.1
 x3 0 0 0.005

 C =
 x1 x2 x3
 MO1 0 0 0
 MO2 1 0 0
 MO3 0 0 1

 D =
 Noise#1 Noise#2 Noise#3
 MO1 2 0 0
 MO2 0 0 0
 MO3 0 0 0

Sample time: 0.1 seconds
Discrete-time state-space model.

The controller converts the continuous-time transfer function model, outdist, into a discrete-time
state-space model.

Remove Output Disturbance from Particular Output Channel

Define a plant model with no direct feedthrough, and create an MPC controller for that plant.

plant = rss(3,3,3);
plant.D = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Retrieve the default output disturbance model from the controller.

distMod = getoutdist(MPCobj);

 setoutdist

2-241

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #3 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Remove the integrator from the second output channel. Construct the new output disturbance model
by removing the second input channel and setting the effect on the second output by the other two
inputs to zero.

distMod = sminreal([distMod(1,1) distMod(1,3); 0 0; distMod(3,1) distMod(3,3)]);
setoutdist(MPCobj,'model',distMod)

When removing an integrator from the output disturbance model in this way, use sminreal to make
the custom model structurally minimal.

View the output disturbance model.

tf(getoutdist(MPCobj))

ans =

 From input "Noise#1" to output...
 0.1
 MO1: -----
 z - 1

 MO2: 0

 MO3: 0

 From input "Noise#2" to output...
 MO1: 0

 MO2: 0

 0.1
 MO3: -----
 z - 1

Sample time: 0.1 seconds
Discrete-time transfer function.

The integrator has been removed from the second channel. The disturbance models for channels 1
and 3 remain at their default values as discrete-time integrators.

Remove Output Disturbances from All Output Channels

Define a plant model with no direct feedthrough and create an MPC controller for that plant.

plant = rss(3,3,3);
plant.D = 0;
MPCobj = mpc(plant,1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.

2 Functions

2-242

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Set the output disturbance model to zero for all three output channels.

setoutdist(MPCobj,'model',tf(zeros(3,1)))

View the output disturbance model.

getoutdist(MPCobj)

ans =

 D =
 Noise#1
 MO1 0
 MO2 0
 MO3 0

Static gain.

A static gain of 0 for all output channels indicates that the output disturbances were removed.

Set Output Disturbance Model to Default Value

Define a plant model with no direct feedthrough and create an MPC controller for that plant.

plant = rss(2,2,2);
plant.D = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Remove the output disturbances for all channels.

setoutdist(MPCobj,'model',tf(zeros(2,1)))

Restore the default output disturbance model.

setoutdist(MPCobj,'integrators')

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

 setoutdist

2-243

model — Custom output disturbance model
[] (default) | ss object | tf object | zpk object

Custom output disturbance model, specified as a state-space (ss), transfer function (tf), or zero-pole-
gain (zpk) model. The MPC controller converts the model to a discrete-time, delay-free, state-space
model. Omitting model or specifying model as [] is equivalent to using
setoutdist(MPCobj,'integrators').

The output disturbance model has:

• Unit-variance white noise input signals. For custom output disturbance models, the number of
inputs is your choice.

• ny outputs, where ny is the number of plant outputs defined in MPCobj.Model.Plant. Each
disturbance model output is added to the corresponding plant output.

This model, along with the input disturbance model (if any), governs how well the controller
compensates for unmeasured disturbances and modeling errors. For more information on the
disturbance modeling in MPC and about the model used during state estimation, see “MPC Prediction
Models” and “Controller State Estimation”.

setoutdist does not check custom output disturbance models for violations of state observability.
This check is performed later in the MPC design process when the internal state estimator is
constructed using commands such as sim or mpcmove. If the controller states are not fully
observable, these commands will generate an error.

Tips
• To view the current output disturbance model, use the getoutdist command.

See Also
mpc | getoutdist | setindist | setEstimator | getEstimator

Topics
“MPC Prediction Models”
“Controller State Estimation”
“Adjust Disturbance and Noise Models”

Introduced in R2006a

2 Functions

2-244

setterminal
Terminal weights and constraints

Syntax
setterminal(MPCobj,Y,U)
setterminal(MPCobj,Y,U,Pt)

Description
setterminal(MPCobj,Y,U) specifies diagonal quadratic penalty weights and constraints at the last
step in the prediction horizon. The weights and constraints are on the terminal output y(t+p) and
terminal input u(t+p – 1), where p is the prediction horizon of the MPC controller MPCobj.

setterminal(MPCobj,Y,U,Pt) specifies diagonal quadratic penalty weights and constraints from
step Pt to the horizon end. By default, Pt is the last step in the horizon.

Examples

Specify Constraints and Penalty Weights at Last Prediction Horizon Step

Create an MPC controller for a plant with three output variables and two manipulated variables.

plant = rss(3,3,2);
plant.D = 0;
mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 y2 and zero weight for output(s) y3

Specify a prediction horizon of 8.

mpcobj.PredictionHorizon = 8;

Define the following penalty weights and constraints:

• Diagonal penalty weights of 1 and 10 on the first two output variables
• Lower bounds of 0 and -1 on the first and third outputs respectively
• Upper bound of 2 on the second output
• Lower bound of 1 on the first manipulated variable

Y = struct('Weight',[1,10,0],'Min',[0,-Inf,-1],'Max',[Inf,2,Inf]);
U = struct('Min',[1,-Inf]);

Specify the constraints and penalty weights at the last step of the prediction horizon.

 setterminal

2-245

setterminal(mpcobj,Y,U)

Specify Terminal Constraints For Final Prediction Horizon Range

Create an MPC controller for a plant with three output variables and two manipulated variables.

plant = rss(3,3,2);
plant.D = 0;
mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 y2 and zero weight for output(s) y3

Specify a prediction horizon of 10.

mpcobj.PredictionHorizon = 10;

Define the following terminal constraints:

• Lower bounds of 0 and -1 on the first and third outputs respectively
• Upper bound of 2 on the second output
• Lower bound of 1 on the first manipulated variable

Y = struct('Min',[0,-Inf,-1],'Max',[Inf,2,Inf]);
U = struct('Min',[1,-Inf]);

Specify the constraints beginning at step 5 and ending at the last step of the prediction horizon.

setterminal(mpcobj,Y,U,5)

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Y — Terminal weights and constraints for the output variables
structure

Terminal weights and constraints for the output variables, specified as a structure with the following
fields:

Weight 1-by-ny vector of nonnegative weights
Min 1-by-ny vector of lower bounds
Max 1-by-ny vector of upper bounds

2 Functions

2-246

MinECR 1-by-ny vector of constraint-softening Equal Concern for the Relaxation
(ECR) values for the lower bounds

MaxECR 1-by-ny vector of constraint-softening ECR values for the upper bounds

ny is the number of controlled outputs of the MPC controller.

If the Weight, Min or Max field is empty, the values in MPCobj are used at all prediction horizon
steps including the last. For the standard bounds, if any element of the Min or Max field is infinite, the
corresponding variable is unconstrained at the terminal step.

Off-diagonal weights are zero (as described in “Standard Cost Function”). To apply nonzero off-
diagonal terminal weights, you must augment the plant model. See “Provide LQR Performance Using
Terminal Penalty Weights”.

By default, Y.MinECR = Y.MaxECR = 1 (soft output constraints).

Choose the ECR magnitudes carefully, accounting for the importance of each constraint and the
numerical magnitude of a typical violation.

U — Terminal weights and constraints for the manipulated variables
structure

Terminal weights and constraints for the manipulated variables, specified as a structure with the
following fields:

Weight 1-by-nu vector of nonnegative weights
Min 1-by-nu vector of lower bounds
Max 1-by-nu vector of upper bounds
MinECR 1-by-nu vector of constraint-softening Equal Concern for the

Relaxation (ECR) values for the lower bounds
MaxECR 1-by-nu vector of constraint-softening ECR values for the upper

bounds

nu is the number of manipulated variables of the MPC controller.

If the Weight, Min or Max field is empty, the values in MPCobj are used at all prediction horizon
steps including the last. For the standard bounds, if individual elements of the Min or Max fields are
infinite, the corresponding variable is unconstrained at the terminal step.

Off-diagonal weights are zero (as described in “Standard Cost Function”). To apply nonzero off-
diagonal terminal weights, you must augment the plant model. See “Provide LQR Performance Using
Terminal Penalty Weights”.

By default, U.MinECR = U.MaxECR = 0 (hard manipulated variable constraints)

Choose the ECR magnitudes carefully, accounting for the importance of each constraint and the
numerical magnitude of a typical violation.

Pt — Initial application step for terminal weight and constraints
prediction horizon p (default) | integer less than p

Step in the prediction horizon, specified as an integer between 1 and p, where p is the prediction
horizon. The terminal weights and constraints are applied from prediction step Pt to the end.

 setterminal

2-247

See Also
mpc | mpcprops | setconstraint

Topics
“Provide LQR Performance Using Terminal Penalty Weights”
“Terminal Weights and Constraints”

Introduced in R2011a

2 Functions

2-248

sim
Simulate an MPC controller in closed loop with a linear plant

Syntax
sim(mpcobj,Ns,r)
sim(mpcobj,Ns,r,v)
sim(___ ,SimOptions)
[y,t,u,xp,xc,SimOptions] = sim(___)

Description
Use the Model Predictive Control Toolbox sim function to simulate, in discrete time, the closed-loop
or open-loop response of an MPC controller with constraints and weights that do not change at run
time. The MPC controller can be implicit or explicit, the controlled plant must be linear and time-
invariant, and you must specify the reference and disturbance signals in advance. By default, the
plant used in the simulation is the one in MPCobj.Model.Plant, but you can use a different plant
model to assess the controller robustness to model mismatch.

To run simulink models programmatically instead, see sim (Simulink).

sim(mpcobj,Ns,r) simulates the closed-loop response to the specified reference signal, r. The
simulation runs in discrete time, with sample time mpcobj.Ts, for the specified number of simulation
steps, Ns, and simulation results are plotted. The plant model is the one specified in
mpcobj.Model.Plant (which is discretized or resampled, if needed). The MPC controller mpcobj
can be either a traditional MPC controller (mpc) or explicit MPC controller (explicitMPC).

sim(mpcobj,Ns,r,v) also specifies the measured disturbance signal v.

sim(___ ,SimOptions) specifies additional simulation options. This syntax allows you to alter the
default simulation options, such as initial states, input/output noise, and unmeasured disturbances,
plant mismatch, etc. It also allows you to simulate the plant in open loop. You can use SimOptions
with any of the previous input combinations.

[y,t,u,xp,xc,SimOptions] = sim(___) suppresses plotting and instead returns:

• the sequence of plant outputs y,
• the time sequence t (equally spaced by mpcobj.Ts),
• the manipulated variables u generated by the MPC controller,
• the sequence xp of states of the model of the plant used for simulation,
• the sequence xmpc of states of the MPC controller (provided by the state observer),
• and the simulation options object, SimOptions.

Examples

 sim

2-249

Simulate MPC Control of MISO Plant

Simulate the MPC control of a MISO system. The system has one manipulated variable, one measured
disturbance, one unmeasured disturbance, and one output.

Create the continuous-time plant model. This plant will be used as the prediction model for the MPC
controller.

sys = ss(tf({1,1,1},{[1 .5 1],[1 1],[.7 .5 1]}));

Discretize the plant model using a sampling time of 0.2 units.

Ts = 0.2;
sysd = c2d(sys,Ts);

Specify the MPC signal type for the plant input signals.

sysd = setmpcsignals(sysd,'MV',1,'MD',2,'UD',3);

Create an MPC controller for the sysd plant model. Use default values for the weights and horizons.

MPCobj = mpc(sysd);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Constrain the manipulated variable to the [0 1] range.

MPCobj.MV = struct('Min',0,'Max',1);

Specify the simulation stop time.

Tstop = 30;

Define the reference signal and the measured disturbance signal.

num_sim_steps = round(Tstop/Ts);
r = ones(num_sim_steps,1);
v = [zeros(num_sim_steps/3,1); ones(2*num_sim_steps/3,1)];

The reference signal, r, is a unit step. The measured disturbance signal, v, is a unit step, with a 10
unit delay.

Simulate the controller.

sim(MPCobj,num_sim_steps,r,v)

-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #3 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

2 Functions

2-250

 sim

2-251

Input Arguments
mpcobj — Model predictive controller
mpc object | explicitMPC object

Model predictive controller, specified as one of the following:

• mpc object — Implicit MPC controller
• explicitMPC object — Explicit MPC controller created using generateExplicitMPC.

Ns — Number of simulation steps
positive integer

Number of simulation steps, specified as a positive integer.

If you omit Ns, the default value is the number of rows of whichever of the following arrays has the
largest number of rows:

• The input argument r
• The input argument v
• The UnmeasuredDisturbance property of SimOptions, if specified
• The OutputNoise property of SimOptions, if specified

Example: 100

2 Functions

2-252

r — Reference signal
MPCobj.Model.Nominal.Y (default) | double array

Reference signal, specified as an array. This array has ny columns, where ny is the number of plant
outputs. r can have anywhere from 1 to Ns rows. If the number of rows is less than Ns, the missing
rows are set equal to the last row.
Example: ones(100,1)

v — Measured input disturbance signal
MPCobj.Model.Nominal.U (default) | double array

Measured disturbance signal, specified as an array. This array has nv columns, where nv is the
number of measured input disturbances. v can have anywhere from 1 to Ns rows. If the number of
rows is less than Ns, the missing rows are set equal to the last row.
Example: [zeros(50,1);ones(50,1)]

SimOptions — Simulation options
[] (default) | mpcsimopt object

Simulation options, used to specify additional simulation options as well as noise and disturbance
signals that feed into the plant but are unknown to the controller. You can also use this object to
simulate the plant in open loop, or to specify a plant model to be used in simulation that is different
from the one in MPCobj.Model.Plant, which allows you to assess the robustness of the control loop
response to model mismatch.

For more information, see mpcsimopt.

Output Arguments
y — Sequence of plant outputs values
double array

Sequence of plant outputs values, returned as a Ns-by-Ny array, where Ns is the number of simulation
steps and Ny is the number of plant outputs. The values in y include neither additive output
disturbances nor additive measurement noise (if any).

t — Time sequence
double column vector

Time sequence, returned as a Ns-by-1 array, where Ns is the number of simulation steps. The values
in t are equally spaced by MPCobj.Ts.

u — Sequence of manipulated variables
double array

Sequence of manipulated variables values generated by the MPC controller, returned as a Ns-by-Nu
array, where Ns is the number of simulation steps and Nu is the number of manipulated variables.

xp — Sequence of plant model states values
struct array

 sim

2-253

Sequence of plant model states values, returned as an Ns-by-Nxp array, where Ns is the number of
simulation steps and Nxp is the number of states in the plant model. The plant model is either
MPCobj.Model or SimOptions.Model, if the latter is specified.

xc — Controller states
struct array

Sequence of MPC controller states, returned as an Ns-by-1 structure array. Each entry in the
structure array has the same fields as an mpcstate object. The controller uses a built-in linear
Kalman filter to estimate the state of the plant, augmented by the disturbance and noise models. The
state of the controller is the state of its internal Kalman filter. For open-loop simulations, xc is empty.

SimOptions — Simulation options object
mpcsimopt object

Simulation options objects used for the simulation. This object can specify noise and disturbance
signals that feed into the plant but are unknown to the controller. It can also specify if the simulated
system is open loop or if the plant model used in the simulation is different from the one in
MPCobj.Model.Plant.

For more information, see mpcsimopt.

See Also
mpcsimopt | mpc | mpcmove

Introduced before R2006a

2 Functions

2-254

simplify
Reduce explicit MPC controller complexity and memory requirements

Syntax
EMPCreduced = simplify(EMPCobj,'exact')
EMPCreduced = simplify(EMPCobj,'exact',uniteeps)
EMPCreduced = simplify(EMPCobj,'radius',r)
EMPCreduced = simplify(EMPCobj,'sequence',index)
simplify(EMPCobj, ___)

Description
EMPCreduced = simplify(EMPCobj,'exact') attempts to reduce the number of piecewise
affine (PWA) regions in an explicit MPC controller by merging regions that have identical controller
gains and whose union is a convex set. Reducing the number of PWA regions reduces memory
requirements of the controller. This command returns a reduced controller, EMPCreduced. If the
second argument is omitted then it is assumed to be 'exact'.

EMPCreduced = simplify(EMPCobj,'exact',uniteeps) specifies the tolerance for identifying
regions that can be merged.

EMPCreduced = simplify(EMPCobj,'radius',r) retains only regions whose Chebyshev radius
(the radius of the largest ball contained in the region) is larger than r.

EMPCreduced = simplify(EMPCobj,'sequence',index) eliminates all regions except those
specified in an index vector.

simplify(EMPCobj, ___) applies the reduction to the explicit MPC controller EMPCobj, rather
than returning a new controller object. You can use this syntax with any of the previous reduction
options.

Examples

Simplify Explicit MPC Controller

Define a plant model. For this example, define the plant model as a double integrator.

plant = tf(1,[1 0 0]) % plant model

plant =

 1

 s^2

Continuous-time transfer function.

Create an MPC controller with a sampling time of 0.1 seconds, a prediction horizon or 10 steps, and a
control horizon of 3 steps. Also define a constraint on the manipulated variable.

 simplify

2-255

mpcobj = mpc(plant, 0.1, 10, 3); % MPC controller

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

mpcobj.ManipulatedVariables = struct('Min',-1,'Max',1); % hard constraint on manipulated variable

Create a range structure to specify the ranges for input, state, and reference signals.

range.ManipulatedVariable.Min = -1.1; % input signal min
range.ManipulatedVariable.Max = 1.1; % input signal max

range.State.Min(:) = [-10;-10]; % states min
range.State.Max(:) = [10;10]; % states max

range.Reference.Min = -2; % reference min
range.Reference.Max = 2; % reference max

Generate an explicit MPC controller with the specified signal ranges using the
generateExplicitMPC function, and display the resulting controller.

mpcobjExplicit = generateExplicitMPC(mpcobj,range)

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Regions found / unexplored: 19/ 0

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 19
Number of parameters: 4
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'mpcobjExplicit.MPC' for the original implicit MPC design.
Type 'mpcobjExplicit.Range' for the valid range of parameters.
Type 'mpcobjExplicit.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'mpcobjExplicit.PiecewiseAffineSolution' for regions and gain in each solution.

Note that the resulting explicit controller has 19 polyhedral regions.

Use simplify to simplify the explicit MPC controller, and display the resulting controller.

reducedEMPC = simplify(mpcobjExplicit)

Regions to analyze: 15/ 15

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 15

2 Functions

2-256

Number of parameters: 4
Is solution simplified: Yes
State Estimation: Default Kalman gain

Type 'reducedEMPC.MPC' for the original implicit MPC design.
Type 'reducedEMPC.Range' for the valid range of parameters.
Type 'reducedEMPC.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'reducedEMPC.PiecewiseAffineSolution' for regions and gain in each solution.

Note that the simplified explicit controller has 15 polyhedral regions.

Input Arguments
EMPCobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller to reduce, specified as an Explicit MPC controller object. Use
generateExplicitMPC to create an explicit MPC controller.

uniteeps — Tolerance for joining regions
0.001 (default) | positive scalar

Tolerance for joining PWA regions, specified as a positive scalar.

r — Minimum Chebyshev radius
0 (default) | nonnegative scalar

Minimum Chebyshev radius for retaining PWA regions, specified as a nonnegative scalar. When you
use the 'radius' option, simplify keeps only the regions whose Chebyshev radius is larger than r.
The default value is 0, which causes all regions to be retained.

index — Indices of PWA regions to retain
1:nr (default) | vector

Indices of PWA regions to retain, specified as a vector. The default value is [1:nr], where nr is the
number of PWA regions in EMPCobj. Thus, by default, all regions are retained. You can obtain a
sequence of regions to retain by performing simulations using EMPCobj and recording the indices of
regions actually encountered.

Output Arguments
EMPCreduced — Reduced MPC controller
explicit MPC controller object

Reduced MPC controller, returned as an Explicit MPC controller object.

See Also
generateExplicitMPC

Topics
“Explicit MPC Control of a Single-Input-Single-Output Plant”

 simplify

2-257

Introduced in R2014b

2 Functions

2-258

size
Size and order of MPC Controller

Syntax
mpcSize = size(MPCobj)
signalSize = size(MPCobj,SignalType)
size(___)

Description
Use the Model Predictive Control Toolbox size function to return size and order of an MPC
controller (see mpc for background).

To return the dimensions of an generic array or table instead, see size.

mpcSize = size(MPCobj) returns a row vector specifying the number of manipulated variables
and the number of measured plant outputs associated with MPCobj.

signalSize = size(MPCobj,SignalType) returns the number of the element of the specified
signal type associated with MPCobj.

size(___) displays the corresponding size information for any of the previous syntaxes.

Examples

Get size of MPC controller

Create a plant, a corresponding MPC object, and get the size of the MPC signals.

mpcverbosity off; % turn off mpc messages
plant = rss(5,2,3);plant.D=0; % random state space
mpcobj=mpc(plant,1); % create mpc object (1 second sampling time)

mpcSize = size(mpcobj) % size of the MPC controller
mpcSize =
 3 2

nMV = size(mpcobj,'MV') % size of manipulated variables vector
nMV =
 3
nMO = size(mpcobj,"MO") % size of measured output vector
nMO =
 2
nMD = size(mpcobj,'md') % size of measured (input) disturbance vector
nMD =
 0

size(mpcobj) % size of MPC controller, printout

 size

2-259

MPC controller with 2 measured output(s), 0 unmeasured output(s),
3 manipulated input(s), 0 measured disturbance(s), 0 unmeasured disturbance(s)

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

SignalType — Type of the MPC signal
character array | string

You can specify SignalType as one of the following (in lower or upper case):

• 'uo' — Unmeasured controlled outputs
• 'md' — Measured disturbances
• 'ud' — Unmeasured disturbances
• 'mv' — Manipulated variables
• 'mo' — Measured controlled outputs

Example: "MV"

Output Arguments
mpcSize — Size of the MPC controller
row vector

This row vector contains the two positive integers, nu and nym, where nu is the number of manipulated
variables (controlled plant inputs) and nym is the number of measured plant outputs.

signalSize — Size of the MPC signal
nonnegative integer

This positive integer is the number of elements of the specified signal type associated with MPCobj

See Also
mpc | set

Introduced before R2006a

2 Functions

2-260

ss
Convert unconstrained MPC controller to state-space linear system form

Syntax
kss = ss(MPCobj)
kssFull = ss(MPCobj,signals)
kssFullPv = ss(MPCobj,signals,refPreview,mdPreview)
[kss,ut] = ss(MPCobj)

Description
Use the Model Predictive Control Toolbox ss function to convert an unconstrained MPC controller
with defined sample time to state space form (see mpc for background). The returned controller is
equivalent to the original MPC controller MPCobj when no constraints are active. You can then use
Control System Toolbox™ software for sensitivity analysis and other diagnostic calculations.

To create or convert a generic LTI dynamical system to state space form, see ss and “Dynamic
System Models”.

kss = ss(MPCobj) returns the linear discrete-time dynamic controller kss, in state-space form.
kss is equivalent to the MPC controller MPCobj when no constraint is active.

kssFull = ss(MPCobj,signals) returns the linear discrete-time dynamic controller kss, in full
state-space form, and allows you to specify the signals that you want to include as inputs for
kssFull.

kssFullPv = ss(MPCobj,signals,refPreview,mdPreview) specifies whether the returned
controller has preview action, that is if it uses the whole reference and measured disturbance
sequences as input signals.

[kss,ut] = ss(MPCobj) also returns the input target values for the full form of the controller.

Examples

Convert Unconstrained MPC Controller to State-Space Model

Create the plant model.

plant = rss(5,2,3);
plant.D = 0;
plant = setmpcsignals(plant,'mv',1,'md',2,'ud',3,'mo',1,'uo',2);

Configure the MPC controller with a sample time of 0.1 seconds and nonzero nominal values,
weights, and input targets.

mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.

 ss

2-261

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.
 for output(s) y1 and zero weight for output(s) y2

mpcobj.Model.Nominal.U = [0.7 0.8 0];
mpcobj.Model.Nominal.Y = [0.5 0.6];
mpcobj.Model.Nominal.DX = rand(5,1);

mpcobj.Weights.MV = 2;
mpcobj.Weights.OV = [3 4];

mpcobj.MV.Target = [0.1 0.2 0.3];

Specifying mpcobj.Model.Nominal.DX as nonzero means that the nominal values are not at steady
state mpcobj.MV.Target specifies three preview steps.

Convert mpcobj to a state-space model.

Kss = ss(mpcobj)

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
 Assuming unmeasured input disturbance #3 is integrated white noise.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Kss =

 A =
 xMPC1 xMPC2 xMPC3 xMPC4 xMPC5
 xMPC1 0.6713 0.04207 0.1267 0.01344 -0.09876
 xMPC2 0.02215 0.7027 0.1261 0.0332 -0.08825
 xMPC3 -0.05555 -0.1095 0.7378 -0.1265 0.1711
 xMPC4 -0.05395 0.04959 0.1765 0.5649 -0.1107
 xMPC5 -0.002772 -0.01301 -0.1778 0.004795 0.7193
 xMPC6 0.09615 0 -0.1363 0.1317 0.09372
 prev.MV1 -0.6477 -0.24 -0.3161 -1.176 0.6766

 xMPC6 prev.MV1
 xMPC1 -0.003895 7.095e-06
 xMPC2 -0.07105 -1.571e-05
 xMPC3 0.06713 0.0001034
 xMPC4 0.01855 0.000207
 xMPC5 0.08932 -1.435e-05
 xMPC6 1 0
 prev.MV1 0.4708 0.002093

 B =
 MO1
 xMPC1 -0.02458
 xMPC2 -0.02111
 xMPC3 0.08656
 xMPC4 -0.03556
 xMPC5 0.01104
 xMPC6 0.08828
 prev.MV1 0.1824

2 Functions

2-262

 C =
 xMPC1 xMPC2 xMPC3 xMPC4 xMPC5 xMPC6 prev.MV1
 MV1 -0.6477 -0.24 -0.3161 -1.176 0.6766 0.4708 0.002093

 D =
 MO1
 MV1 0.1824

Sample time: 0.1 seconds
Discrete-time state-space model.

The output, sys, is a seventh-order SISO state-space model. The seven states include the five plant
model states, one state from the default input disturbance model, and one state from the previous
move, u(k-1).

Set mpcobj to use custom state estimation.

setEstimator(mpcobj,'custom');

Convert mpcobj to a static gain matrix for state-feedback.

K = ss(mpcobj)

As expected this is a row vector with seven elements.

Reset mpcobj to use the default estimator.

setEstimator(mpcobj,'default');

You can use 'rv' as a second argument to return a system with 3 additional inputs (reference of
measured plant output, reference of unmeasured plant output and measured disturbance).

Kss = ss(mpcobj, 'rv')

Kss =

 A =
 xMPC1 xMPC2 xMPC3 xMPC4 xMPC5
 xMPC1 0.6713 0.04207 0.1267 0.01344 -0.09876
 xMPC2 0.02215 0.7027 0.1261 0.0332 -0.08825
 xMPC3 -0.05555 -0.1095 0.7378 -0.1265 0.1711
 xMPC4 -0.05395 0.04959 0.1765 0.5649 -0.1107
 xMPC5 -0.002772 -0.01301 -0.1778 0.004795 0.7193
 xMPC6 0.09615 0 -0.1363 0.1317 0.09372
 prev.MV1 -0.6477 -0.24 -0.3161 -1.176 0.6766

 xMPC6 prev.MV1
 xMPC1 -0.003895 7.095e-06
 xMPC2 -0.07105 -1.571e-05
 xMPC3 0.06713 0.0001034
 xMPC4 0.01855 0.000207
 xMPC5 0.08932 -1.435e-05
 xMPC6 1 0
 prev.MV1 0.4708 0.002093

 B =
 MO1 ref.MO1 ref.UO1 MD1

 ss

2-263

 xMPC1 -0.02458 -0.004287 -0.001904 -0.07169
 xMPC2 -0.02111 0.009493 0.004217 -0.008505
 xMPC3 0.08656 -0.06251 -0.02777 0.07852
 xMPC4 -0.03556 -0.1251 -0.05557 0.02606
 xMPC5 0.01104 0.008671 0.003852 -0.006028
 xMPC6 0.08828 0 0 0
 prev.MV1 0.1824 -1.265 -0.5617 1.28

 C =
 xMPC1 xMPC2 xMPC3 xMPC4 xMPC5 xMPC6 prev.MV1
 MV1 -0.6477 -0.24 -0.3161 -1.176 0.6766 0.4708 0.002093

 D =
 MO1 ref.MO1 ref.UO1 MD1
 MV1 0.1824 -1.265 -0.5617 1.28

Sample time: 0.1 seconds
Discrete-time state-space model.

Use 't' as a second argument to return a system with 3 additional inputs (input target channels
corresponding to three preview steps).

Kss = ss(mpcobj, 't')

Kss =

 A =
 xMPC1 xMPC2 xMPC3 xMPC4 xMPC5
 xMPC1 0.6713 0.04207 0.1267 0.01344 -0.09876
 xMPC2 0.02215 0.7027 0.1261 0.0332 -0.08825
 xMPC3 -0.05555 -0.1095 0.7378 -0.1265 0.1711
 xMPC4 -0.05395 0.04959 0.1765 0.5649 -0.1107
 xMPC5 -0.002772 -0.01301 -0.1778 0.004795 0.7193
 xMPC6 0.09615 0 -0.1363 0.1317 0.09372
 prev.MV1 -0.6477 -0.24 -0.3161 -1.176 0.6766

 xMPC6 prev.MV1
 xMPC1 -0.003895 7.095e-06
 xMPC2 -0.07105 -1.571e-05
 xMPC3 0.06713 0.0001034
 xMPC4 0.01855 0.000207
 xMPC5 0.08932 -1.435e-05
 xMPC6 1 0
 prev.MV1 0.4708 0.002093

 B =
 MO1 MV1.target(0 MV1.target(1 MV1.target(2
 xMPC1 -0.02458 0.002838 -0.0001696 -0.001357
 xMPC2 -0.02111 -0.006284 0.0003756 0.003005
 xMPC3 0.08656 0.04138 -0.002473 -0.01978
 xMPC4 -0.03556 0.08282 -0.00495 -0.0396
 xMPC5 0.01104 -0.00574 0.0003431 0.002745
 xMPC6 0.08828 0 0 0
 prev.MV1 0.1824 0.8372 -0.05003 -0.4003

 C =
 xMPC1 xMPC2 xMPC3 xMPC4 xMPC5 xMPC6 prev.MV1
 MV1 -0.6477 -0.24 -0.3161 -1.176 0.6766 0.4708 0.002093

2 Functions

2-264

 D =
 MO1 MV1.target(0 MV1.target(1 MV1.target(2
 MV1 0.1824 0.8372 -0.05003 -0.4003

Sample time: 0.1 seconds
Discrete-time state-space model.

You can use the second output argument to return the vector of manipulated variables target values.
This vector corresponds to C.MV.Target - C.Model.Nominal.U(1).

[Kss, ut] = ss(mpcobj);
ut

ut = 3×1

 -0.6000
 -0.5000
 -0.4000

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

signals — Signal selection
'' (default) | character array | string

Specify signals as a character vector or string with any combination that contains one or more of
the following characters:

• 'r' — Output references

• 'v' — Measured disturbances

• 'o' — Offset terms

• 't' — Input targets

For example, to obtain a controller that maps [ym; r; v] to u, use:

kss = ss(MPCobj,'rv');

Example: 'r'

refPreview — use whole reference sequence as input
'off' (default) | 'on'

If this flag is 'on', then the input matrices of the returned controller have a larger size to multiply
the whole reference sequence.
Example: 'on'

 ss

2-265

mdPreview — use whole measured disturbance sequence as input
'off' (default) | 'on'

If this flag is 'on', then the input matrices of the returned controller have a larger size to multiply
the whole disturbance sequence.
Example: 'on'

Output Arguments
kss — state space form of the unconstrained MPC controller
ss object

The discrete-time state space form of the unconstrained MPC controller has the following structure:

x(k + 1) = Ax(k) + Bym(k)

u(k) = Cx(k) + Dym(k)

where A, B, C, and D are the matrices forming a state space realization of the controller kss, ym is
the vector of measured outputs of the plant, and u is the vector of manipulated variables. The
sampling time of controller kss is MPCobj.Ts.

Note Vector x includes the states of the observer (plant + disturbance + noise model states) and the
previous manipulated variable u(k-1).

Note Only the following fields of MPCobj are used when computing the state-space model: Model,
PredictionHorizon, ControlHorizon, Ts, Weights.

Note If MPCobj is set to use custom state estimation, then ss returns a static gain feedback matrix
from the states of the augmented discrete-time plant, including previous values of the manipulated
variables, to the manipulated variables.

kssFull — full state space form of the unconstrained MPC controller
ss object

The full discrete-time state space form of the unconstrained MPC controller has the following
structure:

x(k + 1) = Ax(k) + Bym(k) + Brr(k) + Bvv(k) + Bututarget(k) + Boff

u(k) = Cx(k) + Dym(k) + Drr(k) + Dvv(k) + Dututarget(k) + Doff

Here:

• A, B, C, and D are the matrices forming a state space realization of the controller from measured
plant output to manipulated variables

• r is the vector of setpoints for both measured and unmeasured plant outputs
• v is the vector of measured disturbances.
• utarget is the vector of preferred values for manipulated variables.

2 Functions

2-266

In the general case of nonzero offsets, ym, r, v, and utarget must be interpreted as the difference
between the vector and the corresponding offset. Offsets can be nonzero is
MPCobj.Model.Nominal.Y or MPCobj.Model.Nominal.U are nonzero.

Vectors Boff and Doff are constant terms. They are nonzero if and only if MPCobj.Model.Nominal.DX
is nonzero (continuous-time prediction models), or MPCobj.Model.Nominal.Dx-
MPCobj.Model.Nominal.X is nonzero (discrete-time prediction models). In other words, when
Nominal.X represents an equilibrium state, Boff, Doff are zero.

kssFullPv — full state space form of the unconstrained MPC controller
ss object

If the flag refPreview = 'on', then matrices Br and Dr multiply the whole reference sequence:

x(k + 1) = Ax(k) + Bym(k) + Br[r(k);r(k + 1);...;r(k + p – 1)] +...

u(k) = Cx(k) + Dym(k) + Dr[r(k);r(k + 1);...;r(k + p– 1)] +...

Similarly, if the flag mdPreview='on', then matrices Bv and Dv multiply the whole measured
disturbance sequence:

x(k + 1) = Ax(k) +...+ Bv[v(k);v(k + 1);...;v(k + p)] +...

u(k) = Cx(k) +...+ Dv[v(k);v(k + 1);...;v(k + p)] +...

ut — target values
column vector

ut is returned as a vector of doubles, [utarget(k); utarget(k+1); ... utarget(k+h)].

Here:

• h — Maximum length of previewed inputs; that is, h =
max(length(MPCobj.ManipulatedVariables(:).Target))

• utarget — Difference between the input target and corresponding input offsets; that is,
MPCobj.ManipulatedVariables(:).Targets - MPCobj.Model.Nominal.U

See Also
tf | zpk | cloffset | mpc | set | setEstimator

Topics
“Model Predictive Control of Multi-Input Single-Output Plant”

Introduced before R2006a

 ss

2-267

tf
Convert unconstrained MPC controller to linear transfer function form

Syntax
ktf = tf(MPCobj)

Description
Use the Model Predictive Control Toolbox tf function to convert an unconstrained MPC controller
with defined sample time to transfer function form (see mpc for background). The returned controller
is equivalent to the original MPC controller MPCobj when no constraints are active. You can then use
Control System Toolbox software for sensitivity analysis and other diagnostic calculations.

To create or convert a generic LTI dynamical system to zero/pole/gain form instead, see tf and
“Dynamic System Models”.

ktf = tf(MPCobj) returns the linear discrete-time dynamic controller ktf, in transfer function
form. ktf is equivalent to the MPC controller MPCobj when no constraint is active.

Examples

Convert Unconstrained MPC Controller to Transfer Function Form

Create a plant, a corresponding MPC object, and convert it to transfer function form.

mpcverbosity off; % turn off mpc messaging
plant=tf(1,[1 1],0.2); % create plant (0.2 seconds sampling time)
mpcobj=mpc(plant,0.2); % create mpc object (0.2 second sampling time)

ktf=tf(mpcobj) % convert mpc to transfer function

ktf =

 From input "MO1" to output "MV1":
 0.452 z^3 - 0.6781 z^2 - 1.506e-16 z

 z^3 - 1.001 z^2 + 0.0002642 z + 0.0006399

Sample time: 0.2 seconds
Discrete-time transfer function.

Plot Response to Unmeasured Disturbance

Plot the response to a step in the unmeasured disturbance input using both the sim command and
the controller transfer function form.

% create a plant and the corresponding mpc object
mpcverbosity off; % turn off mpc messaging

2 Functions

2-268

plant=tf({1,1},{[1 1],[1 1]},0.2); % create plant (0.2 seconds sampling time)
plant=setmpcsignals(plant,'UD',2); % second input is a disturbance entering at mv
mpcobj=mpc(plant,0.2); % create mpc object (0.2 second sampling time)

% set input and output disturbance models (remove integrators)
setindist(mpcobj,'model',tf(1)) % set input disturbance model to 1
setoutdist(mpcobj,'model',tf(1)) % set output disturbance model to 1

% closed loop output sensitivity
cloffset(mpcobj)
ans =
 1.4472

% convert the controller and calculate closed loop transfer function
ktf=tf(mpcobj); % convert mpc to transfer function
Muy=feedback(plant(:,1),ktf,1); % closed loop transfer function from mv to y

% closed loop output sensitivity using transfer function
1+dcgain(Muy*ktf)
ans =
 1.4472

% plot closed loop response to a step on the measured input
step(Muy,10); % simulate using step

% create option object to inject disturbance in simulation
SimOptions = mpcsimopt; % create object
SimOptions.UnmeasuredDisturbance = ones(50,1); % specify unmeasured input disturbance

% simulate closed loop for 50 steps with sim and step and plot the response
[y,t,u,xp]=sim(mpcobj,50,0,[],SimOptions); % simulate using sim

% overlap the sim results on the plot
hold on
stairs(t,y,'r')
hold off

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments
ktf — transfer function form of the unconstrained MPC controller
tf object

Transfer function form of the MPC controller MPCobj when no constraint is active. This is also
equivalent to tf(ss(MPCobj))

 tf

2-269

Note If MPCobj is set to use custom state estimation, then tf returns a static gain feedback matrix
from the states of the augmented discrete-time plant, including previous values of the manipulated
variables, to the manipulated variables.

See Also
ss | zpk | cloffset | mpc | set | setEstimator

Topics
“Model Predictive Control of Multi-Input Single-Output Plant”

Introduced before R2006a

2 Functions

2-270

trim
Compute steady-state value of MPC controller plant model state for given inputs and outputs

Syntax
x = trim(MPCobj,y,u)

Description
Use the Model Predictive Control Toolbox trim function to calculate steady state values of LTI
discrete-time plants controlled by an MPC controller (see mpc for background).

To find operating points of dynamic systems instead, see trim (Simulink) and “Compute Steady-State
Operating Points” (Simulink Control Design).

x = trim(MPCobj,y,u) returns a steady-state value for the plant state or the best approximation
in a least squares sense such that:

x− xof f = A(x− xof f) + B(u− uof f)
y − yof f = C(x− xof f) + D(u− uof f)

Here, A,B, C, and D are the state space realization matrices of the discrete-time plant model used
within MPCobj, xoff, uoff, and yoff are the nominal values of the extended state x, input u, and output y
respectively.

Examples

Calculate the steady state value of the plant model state

Create a plant, a corresponding MPC object, and calculate the steady state value of the plant model
state.

mpcverbosity off; % turn off mpc messaging
plant=c2d(ss(zpk([],[-1 -10],20)),1); % create plant (note the steady state gain)
mpcobj=mpc(plant,1); % create mpc object

x=trim(mpcobj,2,1) % caclulate trim point
MPCSTATE object with fields
 Plant: [0.4000 0.4000]
 Disturbance: 0
 Noise: [1×0 double]
 LastMove: 1
 Covariance: [3×3 double]

% check whether the calculated value is actually an equilibrium point
mpcobj.Model.Plant.A*x.Plant+mpcobj.Model.Plant.B*1-x.Plant
ans =
 1.0e-15 *
 0.1110
 0.0555

 trim

2-271

mpcobj.Model.Plant.C*x.Plant+mpcobj.Model.Plant.D*1-2
ans =
 -2.2204e-16

The resulting state value is an equilibrium point because for the given output and input values, the
state at the next time step is equal to the current state (except some numerical errors).

Input Arguments
MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

y — steady state plant output
MPCobj.Model.Nominal.Y (default) | column vector | scalar

This is the plant output (including both measured and unmeasured signals) for which you want to find
a stationary value of the extended plant state. If the plant has a finite steady state gain matrix G0 and
y is equal to G0*u then the plant has a stationary state with output y and input u.
Example: [1 1]'

u — steady state plant input
MPCobj.Model.Nominal.U (default) | column vector | scalar

This is the plant input (including manipulated variables, measured disturbances, and unmeasured
disturbances) for which you want to find a stationary value of the extended plant state. If unmeasured
input disturbance variables exist, their value must be 0.
Example: [0 1]'

Output Arguments
x — steady state extended plant state
mpcstate object

This is the best approximation, in a least squares sense, of the steady-state value for the plant state
corresponding to the given input and output values.

See Also
mpc | mpcstate

Introduced before R2006a

2 Functions

2-272

validateFcns
Examine prediction model and custom functions of nlmpc or nlmpcMultistage objects for potential
problems

Syntax
validateFcns(nlmpcobj,x,mv)
validateFcns(nlmpcobj,x,mv,md)
validateFcns(nlmpcobj,x,mv,md,parameters)
validateFcns(nlmpcobj,x,mv,md,parameters,ref)
validateFcns(nlmpcobj,x,mv,md,parameters,ref,mvtarget)

validateFcns(nlmpcMSobj,x,mv)
validateFcns(nlmpcMSobj,x,mv,simdata)

Description
validateFunctions tests the prediction model, custom cost, custom constraint, and Jacobian
functions of a nonlinear MPC controller for potential problems such as whether information is
missing, whether input and output arguments of any user supplied functions are incompatible with
object settings or whether user supplied analytical gradient/Jacobian functions are numerically
accurate. When you first design your nonlinear MPC controller, or when you make significant changes
to an existing controller, it is best practice to validate your controller functions.

Nonlinear MPC

validateFcns(nlmpcobj,x,mv) tests the functions of nonlinear MPC controller nlmpcobj for
potential problems. The functions are tested using specified state and manipulated variable values, x
and mv, respectively. These values can represent nominal conditions or an arbitrary operating point.
Use this syntax if your controller has no measured disturbances and no parameters.

validateFcns(nlmpcobj,x,mv,md) specifies measured disturbance values. If your controller has
measured disturbance channels, you must specify md. These values can represent nominal conditions
or an arbitrary operating point.

validateFcns(nlmpcobj,x,mv,md,parameters) specifies parameter values. If your controller
has parameters, you must specify parameters.

validateFcns(nlmpcobj,x,mv,md,parameters,ref) specifies output references at nominal
conditions or for an arbitrary operating point.

validateFcns(nlmpcobj,x,mv,md,parameters,ref,mvtarget) specifies manipulated variable
targets at nominal conditions or for an arbitrary operating point.

Multistage Nonlinear MPC

validateFcns(nlmpcMSobj,x,mv) tests the functions of multistage nonlinear MPC controller
nlmpcMSobj for potential problems. The functions are tested using the specified state and
manipulated variable values, x and mv, respectively. These values can represent nominal conditions or
an arbitrary operating point. Use this syntax if your controller has no measured disturbances and no
parameters.

 validateFcns

2-273

validateFcns(nlmpcMSobj,x,mv,simdata) specifies the additional simdata structure. If
parameters are needed for the state and stage functions, you need to provide them in simdata.

Examples

Validate Nonlinear MPC Prediction Model and Custom Functions

Create nonlinear MPC controller with six states, six outputs, and four inputs.

nx = 6;
ny = 6;
nu = 4;
nlobj = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the controller sample time and horizons.

Ts = 0.4;
p = 30;
c = 4;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;
nlobj.ControlHorizon = c;

Specify the prediction model state function and the Jacobian of the state function. For this example,
use a model of a flying robot.

nlobj.Model.StateFcn = "FlyingRobotStateFcn";
nlobj.Jacobian.StateFcn = "FlyingRobotStateJacobianFcn";

Specify a custom cost function for the controller that replaces the standard cost function.

nlobj.Optimization.CustomCostFcn = @(X,U,e,data) Ts*sum(sum(U(1:p,:)));
nlobj.Optimization.ReplaceStandardCost = true;

Specify a custom constraint function for the controller.

nlobj.Optimization.CustomEqConFcn = @(X,U,data) X(end,:)';

Validate the prediction model and custom functions at the initial states (x0) and initial inputs (u0) of
the robot.

x0 = [-10;-10;pi/2;0;0;0];
u0 = zeros(nu,1);
validateFcns(nlobj,x0,u0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

2 Functions

2-274

Create Nonlinear MPC Controller with Discrete-Time Prediction Model

Create a nonlinear MPC controller with four states, two outputs, and one input.

nx = 4;
ny = 2;
nu = 1;
nlobj = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The discrete-time state function uses an optional parameter, the sample time Ts, to integrate the
continuous-time model. Therefore, you must specify the number of optional parameters as 1.

nlobj.Model.NumberOfParameters = 1;

Specify the output function for the controller. In this case, define the first and third states as outputs.
Even though this output function does not use the optional sample time parameter, you must specify
the parameter as an input argument (Ts).

nlobj.Model.OutputFcn = @(x,u,Ts) [x(1); x(3)];

Validate the prediction model functions for nominal states x0 and nominal inputs u0. Since the
prediction model uses a custom parameter, you must pass this parameter to validateFcns.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj, x0, u0, [], {Ts});

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Create Nonlinear MPC Controller with Measured and Unmeasured Disturbances

Create a nonlinear MPC controller with three states, one output, and four inputs. The first two inputs
are measured disturbances, the third input is the manipulated variable, and the fourth input is an
unmeasured disturbance.

nlobj = nlmpc(3,1,'MV',3,'MD',[1 2],'UD',4);

 validateFcns

2-275

To view the controller state, output, and input dimensions and indices, use the Dimensions property
of the controller.

nlobj.Dimensions

ans = struct with fields:
 NumberOfStates: 3
 NumberOfOutputs: 1
 NumberOfInputs: 4
 MVIndex: 3
 MDIndex: [1 2]
 UDIndex: 4

Specify the controller sample time and horizons.

nlobj.Ts = 0.5;
nlobj.PredictionHorizon = 6;
nlobj.ControlHorizon = 3;

Specify the prediction model state function, which is in the file exocstrStateFcnCT.m.

nlobj.Model.StateFcn = 'exocstrStateFcnCT';

Specify the prediction model output function, which is in the file exocstrOutputFcn.m.

nlobj.Model.OutputFcn = 'exocstrOutputFcn';

Validate the prediction model functions using the initial operating point as the nominal condition for
testing and setting the unmeasured disturbance state, x0(3), to 0. Since the model has measured
disturbances, you must pass them to validateFcns.

x0 = [311.2639; 8.5698; 0];
u0 = [10; 298.15; 298.15];
validateFcns(nlobj,x0,u0(3),u0(1:2)');

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Input Arguments
nlmpcobj — Nonlinear MPC controller
nlmpc object

Nonlinear MPC controller, specified as an nlmpc object.

nlmpcMSobj — Nonlinear Multistage MPC controller
nlmpcMultistage object

Multistage nonlinear MPC controller, specified as an nlmpcMultistage object.

x — State values
vector

2 Functions

2-276

State values, specified as a vector of length Nx, where Nx is equal to
nlmpcobj.Dimensions.NumberOfStates, or nlmpcMSobj.Dimensions.NumberOfStates. The
state values can represent nominal conditions or an arbitrary operating point.

mv — Manipulated variable values
vector

Manipulated variable values, specified as a vector of length Nmv, where Nmv is equal to the length of
nlmpcobj.Dimensions.MVIndex or nlmpcMSobj.Dimensions.MVIndex. The manipulated
variable values can represent nominal conditions or an arbitrary operating point.

md — Measured disturbance values
[] (default) | vector

Measured disturbance values, specified as a vector of length Nmd, where Nmd is equal to the length of
nlmpcobj.Dimensions.MDIndex. The measured disturbance values can represent nominal
conditions or an arbitrary operating point.

If your controller has measured disturbance channels, you must specify md. If your controller does not
have measured disturbance channels, specify md as [].

parameters — Parameter values
[] (default) | cell array

Parameter values used by the prediction model, custom cost function, and custom constraints,
specified as a cell array of length Np, where Np is equal to nlmpcobj.Model.NumberOfParameters
or nlmpcMSobj.Model.NumberOfParameters. The order of the parameters must match the order
specified in the model functions, and each parameter must be a numeric parameter with the correct
dimensions.

If your controller has parameters, you must specify parameters. If your controller does not have
parameters, specify parameters as [].

ref — Output reference values
[] (default) | vector

Output reference values, specified as a vector of length Ny, where Ny is equal to
nlmpcobj.Dimensions.NumberOfOutputs or nlmpcMSobj.Model.NumberOfOutputs. ref is
passed to the custom cost and constraint function. The output reference values can represent
nominal conditions or an arbitrary operating point.

If you do not specify ref, the controller passes a vector of zeros to the custom functions.

mvtarget — Manipulated variable targets
[] (default) | vector

Manipulated variable targets, specified as a vector of length Nmv, where Nmv is equal to the length of
nlmpcobj.Dimensions.MVIndex or nlmpcMSobj.Dimensions.MVIndex. The manipulated
variable target values can represent nominal conditions or an arbitrary operating point.

mvtarget is passed to the custom cost and constraint function. If you do not specify mvtarget, the
controller passes a vector of zeros to the custom functions.

simdata — Run-time simulation data structure
structure

 validateFcns

2-277

Run-time simulation data, initially created by getSimulationData, and specified as structure with
fields described in detail in nlmpcmove. For validateFcns, only the following fields are relevant.

MeasuredDisturbance — Measured disturbance values
[] (default) | row vector | array

Measured disturbance values, specified as a row vector of length Nmd or an array with Nmd columns,
where Nmd is the number of measured disturbances. If your multistage MPC object has any measured
disturbance channel defined, you must specify MeasuredDisturbance. If your controller has no
measured disturbances, this field does not exist in the structure returned by getSimulationData.

StateFcnParameters — State function parameter values
[] (default) | vector

State function parameter values, specified as a vector with length equal to the value of the
Model.ParameterLength property of the multistage controller object. If Model.StateFcn needs a
parameter vector, you must provide its value at runtime using this field. If your state function has no
parameter, this field does not exist in the structure returned by getSimulationData.

StageFcnParameters — Stage functions parameter values
[] (default) | vector

Stage functions parameter values, specified as a vector with length equal to the sum of all the values
in the Stages(i).ParameterLength properties of the multistage controller object. If any cost or
constraint function defined in the Stages property needs a parameter vector, you must provide all
the parameter vectors at runtime (stacked in a single column) using this field. If none of your stage
functions needs any parameter, this field does not exist in the structure returned by
getSimulationData.

Tips
• When you provide your own analytical Jacobian functions, it is especially important that these

functions return valid Jacobian values. If validateFunctions detects large differences between
the values returned by your user-defined Jacobian functions and the finite-difference
approximation, verify the code in your Jacobian implementations.

Algorithms
For each controller function, validateFunctions checks whether the function:

• Exists on the MATLAB path
• Has the required number of input arguments
• Can be executed successfully without errors
• Returns the output arguments with the correct size and dimensions
• Returns valid numerical data; that is, it does not return Inf or NaN values

For Jacobian functions, validateFunctions checks whether the returned values are comparable to
a finite-difference approximation of the Jacobian values. These finite-difference values are computed
using numerical perturbation.

2 Functions

2-278

See Also
nlmpc | nlmpcMultistage | nlmpcmove

Topics
“Specify Prediction Model for Nonlinear MPC”
“Specify Cost Function for Nonlinear MPC”
“Specify Constraints for Nonlinear MPC”

Introduced in R2018b

 validateFcns

2-279

zpk
Convert unconstrained MPC controller to zero/pole/gain form

Syntax
kzpk = zpk(MPCobj)

Description
Use the Model Predictive Control Toolbox zpk function to convert an unconstrained MPC controller
with defined sample time to zero/pole/gain form (see mpc for background). The returned controller is
equivalent to the original MPC controller MPCobj when no constraints are active. You can then use
Control System Toolbox software for sensitivity analysis and other diagnostic calculations.

To create or convert a generic LTI dynamical system to zero/pole/gain form instead, see zpk and
“Dynamic System Models”.

kzpk = zpk(MPCobj) returns the linear discrete-time dynamic controller kzpk, in zero/pole/gain
form. kzpk is equivalent to the MPC controller MPCobj when no constraint is active.

Examples

Convert Unconstrained MPC Controller to Zero/Pole/Gain Form

Create a plant, a corresponding MPC object, and convert it to zero/pole/gain form.

mpcverbosity off; % turn off mpc messaging
plant=tf(1,[1 1],0.2); % create plant (0.2 seconds sampling time)
mpcobj=mpc(plant,0.2); % create mpc object (0.2 second sampling time)

kzpk=zpk(mpcobj) % convert to zpk form show the controller's poles and zeroes

kzpk =

 From input "MO1" to output "MV1":
 0.45205 z^2 (z-1.5)

 (z-1) (z-0.02575) (z+0.02485)

Sample time: 0.2 seconds
Discrete-time zero/pole/gain model.

The poles are all inside the unit circle, except the one in z=1. The position of this pole , which is due
to the fact that the default noise model is an integrator, causes the controller static gain to approach
infinity, in turn allowing near perfect tracking of the output reference signal.

Input Arguments
MPCobj — Model predictive controller
MPC controller object

2 Functions

2-280

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments
kzpk — zero/pole/gain form of the unconstrained MPC controller
zpk object

Zero/pole/gain form of the MPC controller MPCobj when no constraint is active. This is also
equivalent to zpk(ss(MPCobj))

Note If MPCobj is set to use custom state estimation, then tf returns a static gain feedback matrix
from the states of the augmented discrete-time plant, including previous values of the manipulated
variables, to the manipulated variables.

See Also
ss | tf | cloffset | mpc | set | setEstimator

Topics
“Model Predictive Control of Multi-Input Single-Output Plant”

Introduced before R2006a

 zpk

2-281

Objects

3

explicitMPC
Explicit model predictive controller

Description
Explicit model predictive control uses offline computations to determine all operating regions in
which the optimal control moves are determined by evaluating a linear function. Explicit MPC
controllers require fewer run-time computations than traditional (implicit) model predictive
controllers and are therefore useful for applications that require small sample times.

To implement explicit MPC, first design a traditional (implicit) model predictive controller for your
application, and then use this controller to generate an explicit MPC controller for use in real-time
control. For more information, see “Design Workflow for Explicit MPC”.

Creation
To create an explicitMPC object:

1 Create an implicit MPC controller using an mpc object.
2 Define the operating range for the explicit MPC controller by creating a range structure using

the generateExplicitRange function and specifying the bounds using dot notation.
3 Define the optimization options for converting the implicit controller into an explicit controller

using the generateExplicitOptions function.
4 Create the explicit MPC controller based on the implicit controller, operating range, and

optimization options using the generateExplicitMPC function.

Properties
MPC — Implicit MPC controller
mpc object

Implicit MPC controller, specified as an mpc object.

Range — Parameter bounds
structure

Parameter bounds that define the controller operating range, specified as a structure with the
following fields.

Field Description
State Bounds on controller state values
Reference Bounds on controller reference signal values
MeasuredDisturbance Bounds on measured disturbance values
ManipulatedVariable Bounds on manipulated variable values

3 Objects

3-2

Define this property using the range input argument to the generateExplicitMPC function, which
you create using the generateExplicitRange function and modify using dot notation. For detailed
descriptions of the range parameters, see generateExplicitRange.

OptimizationOptions — Optimization options
structure

Optimization options for the conversion computation, specified as a structure with the following
fields.

Field Description
zerotol Zero-detection tolerance
removetol Redundant-inequality-constraint detection tolerance
flattol Flat region detection tolerance
normalizetol Constraint normalization tolerance
maxiterNNLS Maximum number of NNLS solver iterations
maxiterQP Maximum number of QP solver iterations
maxiterBS Maximum number of bisection method iterations
polyreduction Method for removing redundant inequalities

Define this property using the opt input argument to the generateExplicitMPC function, which
you create using the generateExplicitOptions function. For detailed descriptions of these
options, see generateExplicitOptions.

PiecewiseAffineSolution — Piecewise affine solution
structure array

Piecewise affine solution for the different operating regions, specified as a structure array with Nr
elements, where Nr is the number of operating regions.

Each structure element contains fields defining the inequality constraints and control law for each
region. For more information on the control law and constraints, see “Design Workflow for Explicit
MPC”.

Field Dimensions
F Row vector of length Nx-by-Nmv.
G Column vector of length Nmv

H Nc-by-Nx array
K Column vector of length Nc

Here:

• Nx is the number of independent variables.
• Nmv is the number of manipulated variables.
• Nc is the number of inequality constraints for the region.

IsSimplified — Flag indicating whether the explicit control law has been simplified
false (default) | true

 explicitMPC

3-3

Flag indicating whether the explicit control law has been simplified using the simplify command. If
the control law is simplified, it approximates the implicit MPC controller behavior. If the control law is
not simplified, it should reproduce the implicit controller behavior exactly, provided both operate
within the bounds described by the Range property.

Object Functions
simplify Reduce explicit MPC controller complexity and memory requirements
plotSection Visualize explicit MPC control law as 2-D sectional plot
mpcmoveExplicit Compute optimal control using explicit MPC
sim Simulate an MPC controller in closed loop with a linear plant
mpcstate MPC controller state
getCodeGenerationData Create data structures for mpcmoveCodeGeneration

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-integrator
plant.

Define the double-integrator plant.

plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a prediction
horizon of 10, and a control horizon of 3.

Ts = 0.1;
p = 10;
m = 3;
MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such as state
values and manipulated variables. To do so, generate a range structure. Then, modify values within
the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
 Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;
range.ManipulatedVariable.Min = -1.1;
range.ManipulatedVariable.Max = 1.1;

3 Objects

3-4

Use the more robust reduction method for the computation. Use generateExplicitOptions to
create a default options set, and then modify the polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj,range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1
Number of parameters: 4
Is solution simplified: No
State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.
Type 'EMPCobj.Range' for the valid range of parameters.
Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

See Also
Explicit MPC Controller | Multiple Explicit MPC Controllers

Topics
“Explicit MPC Control of a Single-Input-Single-Output Plant”
“Explicit MPC Control of an Aircraft with Unstable Poles”
“Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”
“Explicit MPC”
“Design Workflow for Explicit MPC”

Introduced in R2014b

 explicitMPC

3-5

mpc
Model predictive controller

Description
A model predictive controller uses linear plant, disturbance, and noise models to estimate the
controller state and predict future plant outputs. Using the predicted plant outputs, the controller
solves a quadratic programming optimization problem to determine control moves.

For more information on the structure of model predictive controllers, see “MPC Prediction Models”.

Creation

Syntax
mpcobj = mpc(plant)
mpcobj = mpc(plant,ts)
mpcobj = mpc(plant,ts,P,M,W,MV,OV,DV)

mpcobj = mpc(model)
mpcobj = mpc(model,ts)
mpcobj = mpc(model,ts,P,M,W,MV,OV,DV)

Description

mpcobj = mpc(plant) creates a model predictive controller object based on the discrete-time
prediction model plant. The controller, mpcobj, inherits its control interval from plant.Ts, and its
time unit from plant.TimeUnit. All other controller properties are default values. After you create
the MPC controller, you can set its properties using dot notation.

If plant.Ts = -1, you must set the Ts property of the controller to a positive value before
designing and simulating your controller.

mpcobj = mpc(plant,ts) creates a model predictive controller based on the specified plant model
and sets the Ts property of the controller. If plant is:

• A continuous-time model, then the controller discretizes the model for prediction using sample
time ts

• A discrete-time model with a specified sample time, the controller resamples the plant for
prediction using sample time ts

• A discrete-time model with an unspecified sample time (plant.Ts = –1), it inherits the sample
time ts when used for predictions

mpcobj = mpc(plant,ts,P,M,W,MV,OV,DV) specifies the following controller properties. If any
of these values are omitted or empty, the default values apply.

• P sets the PredictionHorizon property.

3 Objects

3-6

• M sets the ControlHorizon property.
• W sets the Weights property.
• MV sets the ManipulatedVariables property.
• OV sets the OutputVariables property.
• DV sets the DisturbanceVariables property.

mpcobj = mpc(model) creates a model predictive controller object based on the specified
prediction model set, which includes the plant, input disturbance, and measurement noise models
along with the nominal conditions at which the models were obtained. When you do not specify a
sample time, the plant model, model.Plant, must be a discrete-time model. This syntax sets the
Model property of the controller.

mpcobj = mpc(model,ts) creates a model predictive controller based on the specified plant model
and sets the Ts property of the controller to ts. If model.Plant is a discrete-time LTI model with an
unspecified sample time (model.Plant.Ts = –1), it inherits the sample time ts when used for
predictions.

mpcobj = mpc(model,ts,P,M,W,MV,OV,DV) specifies additional controller properties. If any of
these values are omitted or empty, the default values apply.

Input Arguments

plant — Plant prediction model
LTI model | identified linear model

Plant prediction model, specified as either an LTI model or a linear System Identification Toolbox
model. The specified plant corresponds to the Model.Plant property of the controller.

If you do not specify a sample time when creating your controller, plant must be a discrete-time
model. For prediction, plant is discretized or resampled if needed using mpcobj.Ts as sample time.
Delays, if present, are incorporated in the resulting discrete time model.

For more information on MPC prediction models, see “MPC Prediction Models”.

Note Direct feedthrough from manipulated variables to any output in plant is not supported.

Example: tf(10,[1 10])

model — Prediction model
structure

Prediction model, specified as a structure with the same format as the Model property of the
controller. If you do not specify a sample time when creating your controller, model.Plant must be a
discrete-time model.

For more information on MPC prediction models, see “MPC Prediction Models”.

Properties
Ts — Controller sample time
positive scalar

 mpc

3-7

Controller sample time, specified as a positive finite scalar. The controller uses a discrete-time model
with sample time Ts for prediction.
Example: mpcobj.Ts = 0.1

PredictionHorizon — Prediction horizon
10 (default) | positive integer

Prediction horizon steps, specified as a positive integer. The product of PredictionHorizon and Ts
is the prediction time; that is, how far the controller looks into the future.
Example: mpcobj.PredictionHorizon = 15

ControlHorizon — Control horizon
2 (default) | positive integer | vector of positive integers

Control horizon, specified as one of the following:

• Positive integer, m, between 1 and p, inclusive, where p is equal to PredictionHorizon. In this
case, the controller computes m free control moves occurring at times k through k+m-1, and holds
the controller output constant for the remaining prediction horizon steps from k+m through k
+p-1. Here, k is the current control interval.

• Vector of positive integers [m1, m2, …], specifying the lengths of blocking intervals. By default the
controller computes M blocks of free moves, where M is the number of blocking intervals. The
first free move applies to times k through k+m1-1, the second free move applies from time k+m1
through k+m1+m2-1, and so on. Using block moves can improve the robustness of your controller.
The sum of the values in ControlHorizon must match the prediction horizon p. If you specify a
vector whose sum is:

• Less than the prediction horizon, then the controller adds a blocking interval. The length of
this interval is such that the sum of the interval lengths is p. For example, if p=10 and you
specify a control horizon of ControlHorizon=[1 2 3], then the controller uses four
intervals with lengths [1 2 3 4].

• Greater than the prediction horizon, then the intervals are truncated until the sum of the
interval lengths is equal to p. For example, if p=10 and you specify a control horizon of
ControlHorizon= [1 2 3 6 7], then the controller uses four intervals with lengths [1 2
3 4].

For more information on manipulated variable blocking, see “Manipulated Variable Blocking”.

Example: mpcobj.ControlHorizon = 3

Model — Prediction model and nominal conditions
structure

Prediction model and nominal conditions, specified as a structure with the following fields. For more
information on the MPC prediction model, see “MPC Prediction Models” and “Controller State
Estimation”.

Plant — Plant prediction model
LTI model | identified linear model

Plant prediction model, specified as either an LTI model or a linear System Identification Toolbox
model.

3 Objects

3-8

Note Direct feedthrough from manipulated variables to any output in plant is not supported.

Example: mpcobj.Model.Plant = ss(-1,1,1,0)

Disturbance — Model describing expected unmeasured disturbances
LTI model

Model describing expected unmeasured disturbances, specified as an LTI model. This model is
required only when the plant has unmeasured disturbances. You can set this disturbance model
directly using dot notation or using the setindist function.

By default, input disturbances are expected to be integrated white noise. To model the signal, an
integrator with dimensionless unity gain is added for each unmeasured input disturbance, unless the
addition causes the controller to lose state observability. In that case, the disturbance is expected to
be white noise, and so, a dimensionless unity gain is added to that channel instead.
Example: mpcobj.Model.Disturbance = tf(5,[1 5])

Noise — Model describing expected output measurement noise
LTI model

Model describing expected output measurement noise, specified as an LTI model.

By default, measurement noise is expected to be white noise with unit variance. To model the signal,
a dimensionless unity gain is added for each measured channel.
Example: mpcobj.Model.Noise = zpk(0,-1,1)

Nominal — Nominal operating point at which plant model is linearized
structure

Nominal operating point at which plant model is linearized, specified as a structure with the following
fields.

Field Description Default
X Plant state at operating point, specified as a column vector

with length equal to the number of states in Model.Plant.
zero vector

U Plant input at operating point, including manipulated
variables and measured and unmeasured disturbances,
specified as a column vector with length equal to the number
of inputs in Model.Plant.

zero vector

Y Plant output at operating point, including measured and
unmeasured outputs, specified as a column vector with
length equal to the number of outputs in Model.Plant.

zero vector

DX For continuous-time models, DX is the state derivative at
operating point: DX=f(X,U). For discrete-time models, DX=x(k
+1)-x(k)=f(X,U)-X. Specify DX as a column vector with length
equal to the number of states in Model.Plant.

zero vector

ManipulatedVariables — Manipulated variable information, bounds, and scale factors
structure array

 mpc

3-9

Manipulated Variable (MV) information, bounds, and scale factors, specified as a structure array with
Nmv elements, where Nmv is the number of manipulated variables. To access this property, you can use
the alias MV instead of ManipulatedVariables.

Note Rates refer to the difference Δu(k)=u(k)-u(k-1). Constraints and weights based on derivatives
du/dt of continuous-time input signals must be properly reformulated for the discrete-time difference
Δu(k), using the approximation du/dt ≅ Δu(k)/Ts.

Each structure element has the following fields.

Min — MV lower bound
-Inf (default) | scalar | vector

Lower bound for a given manipulated variable, specified as a scalar or vector. By default, this lower
bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p-1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(1).Min = -5

Max — MV upper bound
Inf (default) | scalar | vector

Upper bound for a given manipulated variable, specified as a scalar or vector. By default, this upper
bound is Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p-1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(1).Max = 5

MinECR — MV lower bound softness
0 (default) | nonnegative scalar | vector

Softness of the lower bound for a given manipulated variable. A larger equal concern for relaxation
(ECR) value indicates a softer constraint, specified as a nonnegative scalar or vector. By default, MV
lower bounds are hard constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k to time k+p-1, specify a vector of up to
p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(1).MinECR = 0.01

MaxECR — MV upper bound
0 (default) | nonnegative scalar | vector

3 Objects

3-10

Softness of the upper bound for a given manipulated variable. A larger equal concern for relaxation
(ECR) value indicates a softer constraint, specified as a nonnegative scalar or vector. By default, MV
upper bounds are hard constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k to time k+p-1, specify a vector of up to
p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(1).MaxECR = 0.01

RateMin — MV rate of change lower bound
-Inf (default) | nonpositive scalar | vector

Lower bound for the rate of change of a given manipulated variable, specified as a nonpositive scalar
or vector. The MV rate of change is defined as MV(k) - MV(k-1), where k is the current time. By
default, this lower bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p-1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(1).RateMin = -2

RateMax — MV rate of change upper bound
Inf (default) | nonnegative scalar | vector

Upper bound for the rate of change of a given manipulated variable, specified as a nonnegative scalar
or vector. The MV rate of change is defined as MV(k) - MV(k-1), where k is the current time. By
default, this lower bound is Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p-1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(1).RateMax = 2

RateMinECR — MV rate of change lower bound softness
0 (default) | nonnegative finite scalar | vector

Softness of the lower bound for the rate of change of a given manipulated variable. A larger equal
concern for relaxation (ECR) value indicates a softer constraint, specified as a nonnegative finite
scalar or vector. By default, MV rate of change lower bounds are hard constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR values over the prediction horizon from time k to time k+p-1, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR values are used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(2).RateMinECR = 0.01

 mpc

3-11

RateMaxECR — MV rate of change upper bound softness
0 (default) | nonnegative finite scalar | vector

Softness of the upper bound for the rate of change of a given manipulated variable. A larger equal
concern for relaxation (ECR) value indicates a softer constraint, specified as a nonnegative finite
scalar or vector. By default, MV rate of change upper bounds are hard constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR values over the prediction horizon from time k to time k+p-1, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR values are used for the remaining steps of the prediction horizon.
Example: mpcobj.ManipulatedVariables(2).RateMaxECR = 0.01

Target — MV targets
'nominal' (default) | scalar | vector

Targets for a given manipulated variable, specified as a scalar, vector, or as 'nominal' (default).
When Target is 'nominal', then the manipulated variable targets correspond to
mpcobj.Model.Nominal.U.

To use the same target across the prediction horizon, specify a scalar value.

To vary the target over the prediction horizon from time k to time k+p-1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final value is used for the remaining steps of the prediction horizon.

You might want to set target values for some manipulated variables, along with corresponding
nonzero cost function weights, for economic or operational reasons, whenever you have more
manipulated variables than plant outputs. For more information, see “Design MPC Controller for
Nonsquare Plants” and “Setting Targets for Manipulated Variables”.
Example: mpcobj.ManipulatedVariables(2).Target = [0.3 0.2]

Name — MV name
string | character vector

Name of a given manipulated variable, specified as a string or character vector. This is a read-only
property. To modify the names of manipulated variables, use mpcobj.Model.Plant.InputName.
Example: mpcobj.ManipulatedVariables(2).Name

Units — MV units
"" (default) | string | character vector

Units of a given manipulated variable, specified as a string or character vector. This is a read-only
property. To modify the units of manipulated variables, use mpcobj.Model.Plant.InputUnit.
Example: mpcobj.ManipulatedVariables(2).Units

ScaleFactor — MV scale factor
1 (default) | positive finite scalar

Scale factor of a given manipulated variable, specified as a positive finite scalar. Specifying the
proper scale factor can improve numerical conditioning for optimization. In general, use the

3 Objects

3-12

amplitude of the operating range of the manipulated variable. For more information, see “Specify
Scale Factors”.
Example: mpcobj.ManipulatedVariables(1).ScaleFactor = 10

Type — MV type
'continuous' (default) | 'integer' | 'binary' | vector

Type of a given manipulated variable, specified as:

• 'continuous' — This indicates that the manipulated variable is continuous.
• 'binary' — This restricts the manipulated variable to be either 0 or 1.
• 'integer' — This restricts the manipulated variable to be an integer.
• A vector containing all the possible values — This restricts the manipulated variable to the
specified values, for example mpcobj.MV(1).Type = [-1,0,0.5,1,2];.

By default, the type is set to 'continuous'.

For more information, see “Discrete Control Set MPC”.
Example: mpcobj.ManipulatedVariables(1).Type = 'binary'

OutputVariables — Output variable information, bounds, and scale factors
structure array

Output variable (OV) information, bounds, and scale factors, specified as a structure array with Ny
elements, where Ny is the number of output variables. To access this property, you can use the alias
OV instead of OutputVariables.

Each structure element has the following fields.

Min — OV lower bound
-Inf (default) | scalar | vector

Lower bound for a given output variable, specified as a scalar or vector. By default, this lower bound
is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.
Example: mpcobj.OutputVariables(1).Min = -10

Max — OV upper bound
Inf (default) | scalar | vector

Upper bound for a given output variable, specified as a scalar or vector. By default, this upper bound
is Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

 mpc

3-13

Example: mpcobj.OutputVariables(1).Max = 10

MinECR — OV lower bound softness
1 (default) | nonnegative finite scalar | vector

Softness of the lower bound for a given output variable. A larger equal concern for relaxation (ECR)
value indicates a softer constraint, specified as a nonnegative finite scalar or vector. By default, OV
upper bounds are soft constraints.

To avoid creating an infeasible optimization problem at run time, it is best practice to use soft OV
bounds.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k+1 to time k+p, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.
Example: mpcobj.OutputVariables(1).MinECR = 5

MaxECR — OV upper bound softness
1 (default) | nonnegative finite scalar | vector

Softness of the upper bound for a given output variable. A larger equal concern for relaxation (ECR)
value indicates a softer constraint, specified as a nonnegative finite scalar or vector. By default, OV
lower bounds are soft constraints.

To avoid creating an infeasible optimization problem at run time, it is best practice to use soft OV
bounds.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k+1 to time k+p, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.
Example: mpcobj.OutputVariables(1).MaxECR = 10

Name — OV name
string | character vector

Name of a given output variable, specified as a string or character vector. This is a read-only property.
To modify the names of output variables, use mpcobj.Model.Plant.OutputName
Example: mpcobj.OutputVariables(2).Name

Units — OV units
"" (default) | string | character vector

Units of a given output variable, specified as a string or character vector. This is a read-only property.
To modify the names of output variables, use mpcobj.Model.Plant.OutputUnit.
Example: mpcobj.OutputVariables(2).Units

ScaleFactor — OV scale factor
1 (default) | positive finite scalar

3 Objects

3-14

Scale factor of a given output variable, specified as a positive finite scalar. Specifying the proper scale
factor can improve numerical conditioning for optimization. In general, use the operating range of the
output variable. For more information, see “Specify Scale Factors”.
Example: mpcobj.OutputVariables(1).ScaleFactor = 20

DisturbanceVariables — Input disturbance variable information and scale factors
structure array

Disturbance variable (DV) information and scale factors, specified as a structure array with Nd
elements, where Nd is the total number of measured and unmeasured disturbance inputs. The order
of the disturbance signals within DisturbanceVariables is the following: the first Nmd entries
relate to measured input disturbances, the last Nud entries relate to unmeasured input disturbances.

To access this property, you can use the alias DV instead of DisturbanceVariables.

Each structure element has the following fields.

Name — DV name
string | character vector

DV name, specified as a string or character vector. This is a read-only property. To modify the names
of disturbance variables, use mpcobj.Plant.Inputname.
Example: mpcobj.DisturbanceVariables(1).Name

Units — OV units
"" (default) | string | character vector

OV units, specified as a string or character vector. This is a read-only property. To modify the units of
disturbance variables, use mpcobj.Model.Plant.InputUnit.
Example: mpcobj.DisturbanceVariables(1).Units

ScaleFactor — DV scale factor
1 (default) | positive finite scalar

DV scale factor, specified as a positive finite scalar. Specifying the proper scale factor can improve
numerical conditioning for optimization. For more information, see “Specify Scale Factors”.
Example: mpcobj.DisturbanceVariables(1).ScaleFactor = 15

Weights — Standard cost function tuning weights
structure

Standard cost function tuning weights, specified as a structure. The controller applies these weights
to the scaled variables. Therefore, the tuning weights are dimensionless values.

The format of OutputWeights must match the format of the Weights.OutputVariables property
of the controller object. For example, you cannot specify constant weights across the prediction
horizon in the controller object, and then specify time-varying weights using mpcmoveopt.

Weights has the following fields. The values of these fields depend on whether you use the standard
or alternative cost function. For more information on these cost functions, see “Optimization
Problem”.

 mpc

3-15

ManipulatedVariables — Manipulated variable tuning weights
row vector | array

Manipulated variable tuning weights, which penalize deviations from MV targets, specified as a row
vector or array of nonnegative values. The default weight for all manipulated variables is 0.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable tuning weights for one prediction horizon step. If you specify
fewer than p rows, the weights in the final row are used for the remaining steps of the prediction
horizon.

If you use the alternative cost function, specify Weights.ManipulatedVariables as a cell array
that contains the Nmv-by-Nmv Ru matrix. For example, mpcobj.Weights.ManipulatedVariables =
{Ru}. Ru must be a positive semidefinite matrix. Varying the Ru matrix across the prediction horizon
Is not supported. For more information, see “Alternative Cost Function”.
Example: mpcobj.Weights.ManipulatedVariables = [0.1 0.2]

ManipulatedVariablesRate — Manipulated variable rate tuning weights
row vector | array | cell array

Manipulated variable rate tuning weights, which penalize large changes in control moves, specified
as a row vector or array of nonnegative values. The default weight for all manipulated variable rates
is 0.1.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable rate tuning weights for one prediction horizon step. If you
specify fewer than p rows, the weights in the final row are used for the remaining steps of the
prediction horizon.

Note It is best practice to use nonzero manipulated variable rate weights.

To improve the numerical robustness of the optimization problem, the software adds the quantity
10*sqrt(eps) to each zero-valued weight.

Note It is best practice to use nonzero manipulated variable rate weights. If all manipulated variable
rate weights are strictly positive, the resulting QP problem is strictly convex. If some weights are
zero, the QP Hessian could be positive semidefinite. To keep the QP problem strictly convex, when the
condition number of the Hessian matrix KΔU is larger than 1012, the quantity 10*sqrt(eps) is added
to each diagonal term. See “Cost Function”.

If you use the alternative cost function, specify Weights.ManipulatedVariablesRate as a cell
array that contains the Nmv-by-Nmv RΔu matrix. For example,
mpcobj.Weights.ManipulatedVariablesRate = {Rdu}. RΔu must be a positive semidefinite

3 Objects

3-16

matrix. Varying the RΔu matrix across the prediction horizon Is not supported. For more information,
see “Alternative Cost Function”.
Example: mpcobj.Weights.ManipulatedVariablesRate = [0.05 0.1]

OutputVariables — Output variable tuning weights
vector | array

Output variable tuning weights, which penalize deviation from output references, specified as a row
vector or array of nonnegative values. The default weight for all output variables is 1.

To use the same weights across the prediction horizon, specify a row vector of length Ny, where Ny is
the number of output variables.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, specify an array
with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the output variable tuning weights for one prediction horizon step. If you specify fewer
than p rows, the weights in the final row are used for the remaining steps of the prediction horizon.

If you use the alternative cost function, specify Weights.OutputVariables as a cell array that
contains the Ny-by-Ny Q matrix. For example, mpcobj.Weights.OutputVariables = {Q}. Q must
be a positive semidefinite matrix. Varying the Q matrix across the prediction horizon Is not supported.
For more information, see “Alternative Cost Function”.
Example: mpcobj.Weights.OutputVariables = [0]

ECR — Slack variable tuning weight
1e5 (default) | positive scalar

Slack variable tuning weight, specified as a positive scalar. Increase or decrease the equal concern
for relaxation (ECR) weight to make all soft constraints harder or softer, respectively.
Example: mpcobj.Weights.ECR = 0.5e5

Optimizer — QP optimization parameters
structure

QP optimization parameters, specified as a structure with the following fields. The first four fields,
Algorithm, ActiveSetOptions, InteriorPointOptions and MixedIntegerOptions, are
related to the built in solvers. If you chose to use a custom solver for simulation (by setting
CustomSolver to true) these four fields are ignored for simulation. Likewise, if you chose to use a
custom solver for code generation (by setting CustomSolverCodeGen to true) these four fields are
ignored for code generation.

For more information on the supported QP solvers, see “QP Solvers”.

Algorithm — QP solver algorithm
'active-set' (default) | 'interior-point'

QP solver algorithm, specified as one of the following:

• 'active-set' — Solve the QP problem using the KWIK active-set algorithm.
• 'interior-point' — Solve the QP problem using a primal-dual interior-point algorithm with

Mehrotra predictor-corrector.

 mpc

3-17

For applications that require solving QP problems, you can also access the active-set and interior-
point algorithms using the mpcActiveSetSolver and mpcInteriorPointSolver functions,
respectively.
Example: mpcobj.Optimizer.Algorithm = 'interior-point'

ActiveSetOptions — Active-set QP solver settings
structure

Active-set QP solver settings, specified as a structure. These settings apply only when Algorithm is
'active-set', and the type property of all manipulated variables is 'continuous'.

You can specify the following active-set optimizer settings.

MaxIterations — Maximum number of iterations
'default' (default) | positive integer

Maximum number of iterations allowed when computing the QP solution, specified as one of the
following:

• 'default' — The MPC controller automatically computes the maximum number of QP solver
iterations as 4 nc + nv , where:

• nc is the total number of constraints across the prediction horizon.
• nv is the total number of optimization variables across the control horizon.

The default MaxIterations value has a lower bound of 120.
• Positive integer — The QP solver stops after the specified number of iterations. If the solver fails

to converge in the final iteration, the controller:

• Freezes the controller movement if UseSuboptimalSolution is false.
• Applies the suboptimal solution reached after the final iteration if UseSuboptimalSolution

is true.

Note The default MaxIterations value can be very large for some controller configurations, such
as those with large prediction and control horizons. When simulating such controllers, if the QP
solver cannot find a feasible solution, the simulation can appear to stop responding, since the solver
continues searching for a solution until the number of iterations reach MaxIterations.

Example: mpcobj.Optimizer.ActiveSetOptions.MaxIterations = 2000

ConstraintTolerance — Tolerance used to verify that inequality constraints are satisfied
1e-6 (default) | positive scalar

Tolerance used to verify that inequality constraints are satisfied by the optimal solution, specified as a
positive scalar. A larger ConstraintTolerance value allows for larger constraint violations.
Example: mpcobj.Optimizer.ActiveSetOptions.ConstraintTolerance = 1e-5

UseWarmStart — Option indicating whether to warm start each QP solver iteration
true (default) | false

3 Objects

3-18

Option indicating whether to warm start each QP solver iteration by passing in a list of active
inequalities from the previous iteration, specified as a logical value. Inequalities are active when their
equal portion is true.
Example: mpcobj.Optimizer.ActiveSetOptions.UseWarmStart = true

InteriorPointOptions — Interior-point QP solver settings
structure

Interior-point QP solver settings, specified as a structure. These settings apply only when Algorithm
is 'interior-point', and the type property of all manipulated variables is 'continuous'.

You can specify the following interior-point optimizer settings.

MaxIterations — Maximum number of iterations
50 (default) | positive integer

Maximum number of iterations allowed when computing the QP solution, specified as a positive
integer. The QP solver stops after the specified number of iterations. If the solver fails to converge in
the final iteration, the controller:

• Freezes the controller movement if UseSuboptimalSolution is false.
• Applies the suboptimal solution reached after the final iteration if UseSuboptimalSolution is

true.

Example: mpcobj.Optimizer.InteriorPointOptions.MaxIterations = 30

ConstraintTolerance — Tolerance used to verify that equality and inequality constraints
are satisfied
1e-6 (default) | positive scalar

Tolerance used to verify that equality and inequality constraints are satisfied by the optimal solution,
specified as a positive scalar. A larger ConstraintTolerance value allows for larger constraint
violations.
Example: mpcobj.Optimizer.InteriorPointOptions.ConstraintTolerance = 1e-5

OptimalityTolerance — Termination tolerance for first-order optimality (KKT dual
residual)
1e-6 (default) | positive scalar

Termination tolerance for first-order optimality (KKT dual residual), specified as a positive scalar.
Example: mpcobj.Optimizer.InteriorPointOptions.OptimalityTolerance = 1e-5

ComplementarityTolerance — Termination tolerance for first-order optimality (KKT
average complementarity residual)
1e-8 (default) | positive scalar

Termination tolerance for first-order optimality (KKT average complementarity residual), specified as
a positive scalar. Increasing this value improves robustness, while decreasing this value increases
accuracy.
Example: mpcobj.Optimizer.InteriorPointOptions.ComplementarityTolerance = 1e-6

StepTolerance — Termination tolerance for decision variables
1e-8 (default) | positive scalar

 mpc

3-19

Termination tolerance for decision variables, specified as a positive scalar.
Example: mpcobj.Optimizer.InteriorPointOptions.StepTolerance = 1e-7

MixedIntegerOptions — Mixed-integer QP solver settings
structure

Mixed-integer QP solver settings, specified as a structure. This setting apply when any manipulated
variable has a type property which is not 'continuous'. In this case, a built it mixed-integer KWIK
algorithm that implements a branch and bound method is used.

You can specify the following mixed-integer QP optimizer settings.

MaxIterations — Maximum number of iterations
1000 (default) | positive integer

Maximum number of iterations allowed when computing the mixed-integer QP solution, specified as a
positive integer. The mixed-integer QP solver stops after the specified number of iterations. If the
solver fails to converge in the final iteration, the controller:

• Freezes the controller movement if UseSuboptimalSolution is false.
• Applies the suboptimal solution reached after the final iteration if UseSuboptimalSolution is

true.

Example: mpcobj.Optimizer.MixedIntegerOptions.MaxIterations = 500

ConstraintTolerance — Tolerance used to verify that equality and inequality constraints
are satisfied
1e-6 (default) | positive scalar

Tolerance used to verify that equality and inequality constraints are satisfied by the optimal solution,
specified as a positive scalar. A larger ConstraintTolerance value allows for larger constraint
violations.
Example: mpcobj.Optimizer.MixedIntegerOptions.ConstraintTolerance = 1e-5

DiscreteConstraintTolerance — Tolerance used to verify that constraints on the discrete
manipulated variables are satisfied
1e-6 (default) | positive scalar

Tolerance used to verify that constraints in the discrete manipulated variables are satisfied by the
optimal solution, specified as a positive scalar. A larger DiscreteConstraintTolerance value
allows for larger constraint violations.
Example: mpcobj.Optimizer.MixedIntegerOptions.DiscreteConstraintTolerance =
1e-5

RoundingAtRootNode — Option to round the solution at the root node
1 (default) | 0

Option to round the solution at the root node, specified as a boolean. When
RoundingAtRootNode=1, the solver rounds the solution of the relaxed QP problem solved at the
root node of the search tree, so that discrete constraints are satisfied. Then, an additional QP is
solved with respect to the remaining (continuous) variables. If such a QP has a feasible solution, the
corresponding cost is used as a valid upper-bound on the optimal solution of the original mixed-
integer problem. Having such an upper-bound may eliminate entire subtrees in the rest of the

3 Objects

3-20

execution of the solver and accelerate the solution of the following QP relaxations. Unless the number
of iterations MaxIterations is small, it is worth setting RoundingAtRootNode=1. Otherwise,
setting RoundingAtRootNode=0 avoids solving the additional QP.
Example: mpcobj.Optimizer.MixedIntegerOptions.RoundingAtRootNode = true

MaxPendingNodes — Maximum number of pending nodes
1000 (default) | positive scalar

This is the maximum number of pending QP relaxations that can be stored. It determines the memory
allocated to store all pending QP relaxations, which is proportional to (2*m
+3*Nd)*MaxPendingNodes, where m is the number of inequality constraints, and Nd is the number
of discrete variables. If the number of pending relaxations exceeds MaxPendingNodes then the
solver is stopped with status code -3, -4 or -5.
Example: mpcobj.Optimizer.MixedIntegerOptions.MaxPendingNodes = 2000

MinOutputECR — Minimum value allowed for output constraint ECR values
0 (default) | nonnegative scalar

Minimum value allowed for output constraint equal concern for relaxation (ECR) values, specified as
a nonnegative scalar. A value of 0 indicates that hard output constraints are allowed. If either of the
OutputVariables.MinECR or OutputVariables.MaxECR properties of an MPC controller are less
than MinOutputECR, a warning is displayed and the value is raised to MinOutputECR during
computation.
Example: mpcobj.Optimizer.MinOutputECR = 1e-10

UseSuboptimalSolution — Option indicating whether a suboptimal solution is acceptable
false (default) | true

Option indicating whether a suboptimal solution is acceptable, specified as a logical value. When the
QP solver reaches the maximum number of iterations without finding a solution (the exit Option is 0),
the controller:

• Freezes the MV values if UseSuboptimalSolution is false
• Applies the suboptimal solution found by the solver after the final iteration if

UseSuboptimalSolution is true

To specify the maximum number of iterations, depending on the value of Algorithm, use either
ActiveSetOptions.MaxIterations or InteriorPointOptions.MaxIterations.
Example: mpcobj.Optimizer.UseSuboptimalSolution = true

CustomSolver — Option indicating whether to use a custom QP solver for simulation
false (default) | true

Option indicating whether to use a custom QP solver for simulation, specified as a logical value. If
CustomSolver is true, the user must provide an mpcCustomSolver function on the MATLAB path.

This custom solver is not used for code generation. To generate code for a controller with a custom
solver, use CustomSolverCodeGen.

If CustomSolver is true, the controller does not require the custom solver to honor the settings in
either ActiveSetOptions or InteriorPointOptions.

 mpc

3-21

You can also use the function setCustomSolver to automatically configure mpcobj to use the
active-set algorithm of quadprog as a custom QP solver for both simulation and code generation.

For more information on using a custom QP solver see, “QP Solvers”.
Example: mpcobj.Optimizer.CustomSolver = true

CustomSolverCodeGen — Option indicating whether to use a custom QP solver for code
generation
false (default) | true

Option indicating whether to use a custom QP solver for code generation, specified as a logical value.
If CustomSolverCodeGen is true, the user must provide an mpcCustomSolverCodeGen function
on the MATLAB path.

This custom solver is not used for simulation. To simulate a controller with a custom solver, use
CustomSolver.

You can also use the function setCustomSolver to automatically configure mpcobj to use the
active-set algorithm of quadprog as a custom QP solver for both simulation and code generation.

For more information on using a custom QP solver see, “QP Solvers”.
Example: mpcobj.Optimizer.CustomSolverCodeGen = true

Notes — User notes
{} (default) | cell array of character vectors

User notes associated with the MPC controller, specified as a cell array of character vectors.
Example: mpcobj.Notes = {'Longitudinal Controller'; 'Version 2.1'}

UserData — User data
[] (default) | any MATLAB data

User data associated with the MPC controller, specified as any MATLAB data, such as a cell array or
structure.
Example: mpcobj.UserData = {'Parameters',0.2,[3 4]'}

History — Controller creation date and time
vector

This property is read-only.

Controller creation date and time, specified as a vector with the following elements:

• History(1) — Year
• History(2) — Month
• History(3) — Day
• History(4) — Hours
• History(5) — Minutes
• History(6) — Seconds

Use datestr(mpcobj.History) to display the controller creation date as a character vector.

3 Objects

3-22

Example: mpcobj.History = datevec(now)

Object Functions
review Examine MPC controller for design errors and stability problems at run

time
mpcmove Compute optimal control action and update controller states
sim Simulate an MPC controller in closed loop with a linear plant
mpcstate MPC controller state
getCodeGenerationData Create data structures for mpcmoveCodeGeneration
generateExplicitMPC Convert implicit MPC controller to explicit MPC controller

Examples

Create MPC Controller with Specified Prediction and Control Horizons

Create a plant model with the transfer function (s + 1)/(s2 + 2s).

Plant = tf([1 1],[1 2 0]);

The plant is SISO, so its input must be a manipulated variable and its output must be measured. In
general, it is good practice to designate all plant signal types using either the setmpcsignals
command, or the LTI InputGroup and OutputGroup properties.

Specify a sample time for the controller.

Ts = 0.1;

Define bounds on the manipulated variable, u, such that −1 ≤ u ≤ 1.

MV = struct('Min',-1,'Max',1);

MV contains only the upper and lower bounds on the manipulated variable. In general, you can specify
additional MV properties. When you do not specify other properties, their default values apply.

Specify a 20-interval prediction horizon and a 3-interval control horizon.

p = 20;
m = 3;

Create an MPC controller using the specified values. The fifth input argument is empty, so default
tuning weights apply.

MPCobj = mpc(Plant,Ts,p,m,[],MV);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Algorithms
To minimize computational overhead, model predictive controller creation occurs in two phases. The
first happens at creation when you use the mpc function, or when you change a controller property.

 mpc

3-23

Creation includes basic validity and consistency checks, such as signal dimensions and nonnegativity
of weights.

The second phase is initialization, which occurs when you use the object for the first time in a
simulation or analytical procedure. Initialization computes all constant properties required for
efficient numerical performance, such as matrices defining the optimal control problem and state
estimator gains. Additional, diagnostic checks occur during initialization, such as verification that the
controller states are observable.

By default, both phases display informative messages in the command window. You can turn these
messages on or off using the mpcverbosity function.

Alternative Functionality
You can also create model predictive controllers using the MPC Designer app.

Compatibility Considerations
Support for implementing economic MPC using a linear MPC controller has been removed
Errors starting in R2018b

Support for implementing economic MPC using a linear MPC controller has been removed.
Implement economic MPC using a nonlinear MPC controller instead. For more information on
nonlinear MPC controllers, see “Nonlinear MPC”.

Update Code

If you previously saved a linear MPC object configured with custom cost or constraint functions, the
software generates a warning when the object is loaded and an error if it is simulated. To suppress
the error and warning messages and continue using your linear MPC controller, mpcobj, without the
custom costs and constraints, set the IsEconomicMPC option to false.

mpcobj.IsEconomicMPC = false;

To implement your economic MPC controller using a nonlinear MPC object:

1 Create an nlmpc object.
2 Convert your custom cost function to the format required for nonlinear MPC. For more

information on nonlinear MPC cost functions, see “Specify Cost Function for Nonlinear MPC”.
3 Convert your custom constraint function to the format required for nonlinear MPC. For more

information on nonlinear MPC constraints, see “Specify Constraints for Nonlinear MPC”.
4 Implement your linear prediction model using state and output functions. For more information

on nonlinear MPC prediction models, see “Specify Prediction Model for Nonlinear MPC”.

See Also
set | get | setmpcsignals | mpcprops | mpcverbosity

Topics
“MPC Prediction Models”
“Design MPC Controller at the Command Line”

3 Objects

3-24

Introduced before R2006a

 mpc

3-25

mpcmoveopt
Option set for mpcmove function

Description
To specify options for the mpcmove, mpcmoveAdaptive, and mpcmoveMultiple functions, use an
mpcmoveopt object.

Using this object, you can specify run-time values for a subset of controller properties, such as tuning
weights and constraints. If you do not specify a value for one of the mpcmoveopt properties, the
value of the corresponding controller option is used instead.

Creation
Syntax
options = mpcmoveopt

Description

options = mpcmoveopt creates a default set of options for the mpcmove function. To modify the
property values, use dot notation.

Properties
OutputWeights — Output variable tuning weights
[] (default) | vector | array

Output variable tuning weights that replace the Weights.OutputVariables property of the
controller at run time, specified as a vector or array of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length Ny, where Ny is
the number of output variables.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, specify an array
with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the output variable tuning weights for one prediction horizon step. If you specify fewer
than p rows, the weights in the final row are used for the remaining steps of the prediction horizon.

The format of OutputWeights must match the format of the Weights.OutputVariables property
of the controller object. For example, you cannot specify constant weights across the prediction
horizon in the controller object, and then specify time-varying weights using mpcmoveopt.

MVWeights — Manipulated variable tuning weights
[] (default) | vector | array

Manipulated variable tuning weights that replace the Weights.ManipulatedVariables property
of the controller at run time, specified as a vector or array of nonnegative values.

3 Objects

3-26

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable tuning weights for one prediction horizon step. If you specify
fewer than p rows, the weights in the final row are used for the remaining steps of the prediction
horizon.

The format of MVWeights must match the format of the Weights.ManipulatedVariables
property of the controller object. For example, you cannot specify constant weights across the
prediction horizon in the controller object, and then specify time-varying weights using mpcmoveopt.

MVRateWeights — Manipulated variable rate tuning weights
[] (default) | vector | array

Manipulated variable rate tuning weights that replace the Weights.ManipulatedVariablesRate
property of the controller at run time, specified as a vector or array of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable rate tuning weights for one prediction horizon step. If you
specify fewer than p rows, the weights in the final row are used for the remaining steps of the
prediction horizon.

The format of MVRateWeights must match the format of the
Weights.ManipulatedVariablesRate property of the controller object. For example, you cannot
specify constant weights across the prediction horizon in the controller object, and then specify time-
varying weights using mpcmoveopt.

ECRWeight — Slack variable tuning weight
[] (default) | positive scalar

Slack variable tuning weight that replaces the Weights.ECR property of the controller at run time,
specified as a positive scalar.

OutputMin — Output variable lower bounds
[] (default) | row vector | matrix

Output variable lower bounds, specified as a row vector of length Ny or as a matrix with Ny columns,
where Ny is the number of output variables.

If you did not specify the OutputVariables(i).Min property of the mpc object, then specifying
OutputMin results in an error when you execute mpcmove.

To change the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with
Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the current time, and p is
the prediction horizon. Each row contains the bounds for one prediction horizon step. If you specify
fewer than p rows, the bounds in the final row are used for the remaining steps of the prediction
horizon.

 mpcmoveopt

3-27

OutputMin(:,i) replaces the OutputVariables(i).Min property of the mpc object at run time.
The replacement behavior depends on the dimensions of both variables.

Scalar OutputVariables(i).Min in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)
OutputMin Dimension Replacement Behavior
Scalar OutputMin (single output, constant bound) OutputMin replaces the constant bound defined in

OutputVariables(i).Min
Column vector OutputMin (single output, time-varying bound) OutputMin replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.
Row vector OutputMin (multiple outputs, constant bounds) OutputMin(i) replaces the constant bound defined in

OutputVariables(i).Min
Matrix OutputMin (multiple outputs, time-varying bounds) OutputMin(:,i) replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.

Vector OutputVariables(i).Min in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)
OutputMin Dimension Replacement Behavior
Scalar OutputMin (single output, constant bound) OutputMin replaces the first finite entry

in OutputVariables.Min and the remaining entries in
OutputVariables.Min shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables.Min vector.

Column vector OutputMin (single output, time-varying bound) OutputMin replaces the time-varying bound defined in
OutputVariables(i).Min, and the original bound profile is
discarded.

Row vector OutputMin (multiple outputs, constant bounds) OutputMin(i) replaces the first finite entry
in OutputVariables(i).Min and the remaining entries in
OutputVariables(i).Min shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Min vector.

Matrix OutputMin (multiple outputs, time-varying bounds). OutputMin(:,i) replaces the time-varying bound defined in
OutputVariables(i).Min, and the original bound profile is
discarded.

OutputMax — Output variable upper bounds
[] (default) | row vector | matrix

Output variable upper bounds, specified as a row vector of length Ny or as a matrix with Ny columns,
where Ny is the number of output variables.

If you did not specify the OutputVariables(i).Max property of the mpc object, then specifying
OutputMax results in an error when you execute mpcmove.

To change the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with
Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the current time, and p is
the prediction horizon. Each row contains the bounds for one prediction horizon step. If you specify
fewer than p rows, the bounds in the final row are used for the remaining steps of the prediction
horizon.

3 Objects

3-28

OutputMax(:,i) replaces the OutputVariables(i).Max property of the mpc object at run time.
The replacement behavior depends on the dimensions of both variables.

Scalar OutputVariables(i).Max in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)
OutputMax Dimension Replacement Behavior
Scalar OutputMax (single output, constant bound) OutputMax replaces the constant bound defined in

OutputVariables(i).Max
Column vector OutputMax (single output, time-varying bound) OutputMax replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.
Row vector OutputMax (multiple outputs, constant bounds) OutputMax(i) replaces the constant bound defined in

OutputVariables(i).Max
Matrix OutputMax (multiple outputs, time-varying bounds) OutputMax(:,i) replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.

Vector OutputVariables(i).Max in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)
OutputMax Dimension Replacement Behavior
Scalar OutputMax (single output, constant bound) OutputMax replaces the first finite entry

in OutputVariables.Max and the remaining entries in
OutputVariables.Max shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables.Max vector.

Column vector OutputMax (single output, time-varying bound) OutputMax replaces the time-varying bound defined in
OutputVariables(i).Max, and the original bound profile is
discarded.

Row vector OutputMax (multiple outputs, constant bounds) OutputMax(i) replaces the first finite entry
in OutputVariables(i).Max and the remaining entries in
OutputVariables(i).Max shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Max vector.

Matrix OutputMax (multiple outputs, time-varying bounds). OutputMax(:,i) replaces the time-varying bound defined in
OutputVariables(i).Max, and the original bound profile is
discarded.

MVMin — Manipulated variable lower bounds
[] (default) | row vector | matrix

Manipulated variable lower bounds, specified as a row vector of length Nmv or as a matrix with Nmv
columns, where Nmv is the number of output variables.

If you did not specify the ManipulatedVariables(i).Min property of the mpc object, then
specifying MVMin results in an error when you execute mpcmove.

To change the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with
Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k is the current
time, and p is the prediction horizon. Each row contains the bounds for one prediction horizon step. If
you specify fewer than p rows, the bounds in the final row are used for the remaining steps of the
prediction horizon.

 mpcmoveopt

3-29

MVMin(:,i) replaces the ManipulatedVariables(i).Min property of the mpc object at run time.
The replacement behavior depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Min in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)
MVMin Dimension Replacement Behavior
Scalar MVMin (single output, constant bound) MVMin replaces the constant bound defined in

ManipulatedVariables(i).Min
Column vector MVMin (single output, time-varying bound) MVMin replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.
Row vector MVMin (multiple outputs, constant bounds) MVMin(i) replaces the constant bound defined in

ManipulatedVariables(i).Min
Matrix MVMin (multiple outputs, time-varying bounds) MVMin(:,i) replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.

Vector ManipulatedVariables(i).Min in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)
MVMin Dimension Replacement Behavior
Scalar MVMin (single output, constant bound) MVMin replaces the first finite entry

in ManipulatedVariables.Min and the remaining entries in
ManipulatedVariables.Min shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Min vector.

Column vector MVMin (single output, time-varying bound) MVMin replaces the time-varying bound defined in
ManipulatedVariables(i).Min, and the original bound
profile is discarded.

Row vector MVMin (multiple outputs, constant bounds) MVMin(i) replaces the first finite entry
in ManipulatedVariables(i).Min and the remaining entries
in ManipulatedVariables(i).Min shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Min vector.

Matrix MVMin (multiple outputs, time-varying bounds). MVMin(:,i) replaces the time-varying bound defined in
ManipulatedVariables(i).Min, and the original bound
profile is discarded.

MVMax — Manipulated variable upper bounds
[] (default) | row vector | matrix

Manipulated variable upper bounds, specified as a row vector of length Nmv or as a matrix with Nmv
columns, where Nmv is the number of output variables.

If you did not specify the ManipulatedVariables(i).Max property of the mpc object, then
specifying MVMax results in an error when you execute mpcmove.

To change the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with
Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k is the current
time, and p is the prediction horizon. Each row contains the bounds for one prediction horizon step. If
you specify fewer than p rows, the bounds in the final row are used for the remaining steps of the
prediction horizon.

3 Objects

3-30

MVMax(:,i) replaces the ManipulatedVariables(i).Max property of the mpc object at run time.
The replacement behavior depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Max in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)

MVMax Dimension Replacement Behavior
Scalar MVMax (single output, constant bound) MVMax replaces the constant bound defined in

ManipulatedVariables(i).Max
Column vector MVMax (single output, time-varying bound) MVMax replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.
Row vector MVMax (multiple outputs, constant bounds) MVMax(i) replaces the constant bound defined in

ManipulatedVariables(i).Max
Matrix MVMax (multiple outputs, time-varying bounds) MVMax(:,i) replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.

Vector ManipulatedVariables(i).Max in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)

MVMax Dimension Replacement Behavior
Scalar MVMax (single output, constant bound) MVMax replaces the first finite entry

in ManipulatedVariables.Max and the remaining entries in
ManipulatedVariables.Max shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Max vector.

Column vector MVMax (single output, time-varying bound) MVMax replaces the time-varying bound defined in
ManipulatedVariables(i).Max, and the original bound
profile is discarded.

Row vector MVMax (multiple outputs, constant bounds) MVMax(i) replaces the first finite entry
in ManipulatedVariables(i).Max and the remaining entries
in ManipulatedVariables(i).Max shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Max vector.

Matrix MVMax (multiple outputs, time-varying bounds). MVMax(:,i) replaces the time-varying bound defined in
ManipulatedVariables(i).Max, and the original bound
profile is discarded.

CustomConstraint — Custom mixed input/output constraints
[] (default) | structure

Custom mixed input/output constraints, specified as a structure with the following fields. These
constraints replace the mixed input/output constraints previously set using setconstraint.

E — Manipulated variable constraint constant
array of zeros (default) | Nc-by-Nmv array

Manipulated variable constraint constant, specified as an Nc-by-Nmv array, where Nc is the number of
constraints, and Nmv is the number of manipulated variables.

F — Controlled output constraint constant
array of zeros (default) | Nc-by-Ny array

 mpcmoveopt

3-31

Controlled output constraint constant, specified as an Nc-by-Ny array, where Ny is the number of
controlled outputs (measured and unmeasured).

G — Mixed input/output constraint constant
column vector of zeros (default) | column vector of length Nc

Mixed input/output constraint constant, specified as a column vector of length Nc.

S — Measured disturbance constraint constant
array of zeros (default) | Nc-by-Nmd array

Measured disturbance constraint constant, specified as an Nc-by-Nmd array, where Nmd is the number
of measured disturbances.

OnlyComputeCost — Option to return only the value of the cost function in the solution
details structure
0 (default) | 1

Option to return only the value of the cost function in the info solution details output structure
returned by mpcmove. Specify it as one of the following:

• 0 — mpcmove returns all the detailed solution information in its second output argument.
• 1 — mpcmove returns only the predicted value of the cost function. This saves some computational
effort as the predicted optimal plant state and output sequences do not need to be calculated.
Note that if mpcmove is not called with a second output argument these sequences are not
calculated either.

MVused — Manipulated variable values used in the plant during the previous control
interval
[] (default) | row vector

Manipulated variable values used in the plant during the previous control interval, specified as a row
vector of length Nmv, where Nmv is the number of manipulated variables. If you do not specify
MVused, the mpvmove uses the LastMove property of its current controller state input argument, x.

MVTarget — Manipulated variable targets
[] (default) | row vector

Manipulated variable targets, specified as a row vector of length Nmv, where Nmv is the number of
manipulated variables. MVTarget(i) replaces the ManipulatedVariables(i).Target property
of the controller at run time.

PredictionHorizon — Prediction horizon
[] (default) | positive integer

Prediction horizon, which replaces the PredictionHorizon property of the controller at run time,
specified as a positive integer. If you specify PredictionHorizon, you must also specify
ControlHorizon.

Specifying PredictionHorizon changes the:

• Number of rows in the optimal sequences returned by the mpcmove and mpcmoveAdaptive
functions

• Maximum dimensions of the Plant and Nominal input arguments of mpcmoveAdaptive

3 Objects

3-32

This parameter is ignored by the mpcmoveMultiple function.

ControlHorizon — Control horizon
[] (default) | positive integer | vector of positive integers

Control horizon, which replaces the ControlHorizon property of the controller at run time,
specified as one of the following:

• Positive integer, m, between 1 and p, inclusive, where p is equal to PredictionHorizon. In this
case, the controller computes m free control moves occurring at times k through k+m-1, and holds
the controller output constant for the remaining prediction horizon steps from k+m through k
+p-1. Here, k is the current control interval. For optimal trajectory planning set m equal to p.

• Vector of positive integers, [m1, m2, …], where the sum of the integers equals the prediction
horizon, p. In this case, the controller computes M blocks of free moves, where M is the length of
the ControlHorizon vector. The first free move applies to times k through k+m1-1, the second
free move applies from time k+m1 through k+m1+m2-1, and so on. Using block moves can
improve the robustness of your controller compared to the default case.

If you specify ControlHorizon, you must also specify PredictionHorizon.

This parameter is ignored by the mpcmoveMultiple function.

Object Functions
mpcmove Compute optimal control action and update controller states
mpcmoveAdaptive Compute optimal control with prediction model updating
mpcmoveMultiple Compute gain-scheduling MPC control action at a single time instant

Examples

Simulation with Varying Controller Property

Vary a manipulated variable upper bound during a simulation.

Define the plant, which includes a 4-second input delay. Convert to a delay-free, discrete, state-space
model using a 2-second control interval. Create the corresponding default controller, and specify MV
bounds at +/-2.

Ts = 2;
Plant = absorbDelay(c2d(ss(tf(0.8,[5 1],'InputDelay',4)),Ts));
MPCobj = mpc(Plant,Ts);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

MPCobj.MV(1).Min = -2;
MPCobj.MV(1).Max = 2;

Create an empty mpcmoveopt object. During simulation, you can set properties of the object to
specify controller parameters.

options = mpcmoveopt;

 mpcmoveopt

3-33

Pre-allocate storage and initialize the controller state.

v = [];
t = [0:Ts:20];
N = length(t);
y = zeros(N,1);
u = zeros(N,1);
x = mpcstate(MPCobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Use mpcmove to simulate the following:

• Reference (setpoint) step change from initial condition r = 0 to r = 1 (servo response)
• MV upper bound step decrease from 2 to 1, occurring at t = 10

r = 1;
for i = 1:N
 y(i) = Plant.C*x.Plant;
 if t(i) >= 10
 options.MVMax = 1;
 end
 [u(i),Info] = mpcmove(MPCobj,x,y(i),r,v,options);
end

As the loop executes, the value of options.MVMax is reset to 1 for all iterations that occur after t =
10. Prior to that iteration, options.MVMax is empty. Therefore, the controller's value for MVMax is
used, MPCobj.MV(1).Max = 2.

Plot the results of the simulation.

[Ts,us] = stairs(t,u);
plot(Ts,us,'b-',t,y,'r-')
legend('MV','OV')
xlabel(sprintf('Time, %s',Plant.TimeUnit))

3 Objects

3-34

From the plot, you can observe that the original MV upper bound is active until t = 4. After the input
delay of 4 seconds, the output variable (OV) moves smoothly to its new target of r = 1. reaching the
target at t = 10. The new MV bound imposed at t = 10 becomes active immediately. This forces the
OV below its target, after the input delay elapses.

Now assume that you want to impose an OV upper bound at a specified location relative to the OV
target. Consider the following constraint design command:

MPCobj.OV(1).Max = [Inf,Inf,0.4,0.3,0.2];

This is a horizon-varying constraint. The known input delay makes it impossible for the controller to
satisfy an OV constraint prior to the third prediction-horizon step. Therefore, a finite constraint
during the first two steps would be poor practice. For illustrative purposes, the previous constraint
also decreases from 0.4 at step 3 to 0.2 at step 5 and thereafter.

The following commands produce the same results shown in the previous plot. The OV constraint is
never active because it is being varied in concert with the setpoint, r.

x = mpcstate(MPCobj);

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

OPTobj = mpcmoveopt;
for i = 1:N
 y(i) = Plant.C*x.Plant;
 if t(i) >= 10

 mpcmoveopt

3-35

 OPTobj.MVMax = 1;
 end
 OPTobj.OutputMax = r + 0.4;
 [u(i),Info] = mpcmove(MPCobj,x,y(i),r,v,OPTobj);
end

The scalar value r + 0.4 replaces the first finite value in the MPCobj.OV(1).Max vector, and the
remaining finite values adjust to maintain the original profile, that is, the numerical difference
between these values is unchanged. r = 1 for the simulation, so the previous use of the mpcmoveopt
object is equivalent to the command

MPCobj.OV(1).Max = [Inf, Inf, 1.4, 1.3, 1.2];

However, using the mpcmoveopt object involves much less computational overhead.

Tips
• If a variable is unconstrained in the initial controller design, you cannot constrain it using

mpcmoveopt. The controller ignores any such specifications.
• You cannot remove a constraint from a variable that is constrained in the initial controller design.

However, you can change it to a large (or small) value such that it is unlikely to become active.

See Also
mpc | mpcmove | setconstraint | setterminal

Introduced in R2018b

3 Objects

3-36

mpcsimopt
MPC simulation options

Description
When simulating an implicit or explicit MPC controller using the sim function, you can specify
additional simulation options using an mpcsimopt object.

Creation
Syntax
options = mpcsimopt;

Description

options = mpcsimopt; creates a default set of options for specifying additional parameters for
simulating an MPC controller with the sim function. To specify nondefault values for the properties
on page 3-37, use dot notation.

Properties
PlantInitialState — Simulation plant model initial state
[] (default) | vector

Simulation plant model initial state, specified as a vector with length equal to the number states in
the plant model used for the simulation. To use the default nominal state of the simulation plant
model, set PlantInitialState to [].

If you do not specify the Model option, then the plant model used for the simulation is the internal
plant model from the controller. In this case, the default initial controller state is equal to
mpcobj.Model.Nominal.X.

If you specify the Model option, then the plant model used for simulation is Model.Plant. In this
case, the default initial controller state is equal to Model.Nominal.X.

ControllerInitialState — MPC controller initial condition
[] (default) | mpcstate object

MPC controller initial condition, specified as an mpcstate object. Setting
ControllerInitialState = [] is equivalent to setting ControllerInitialState =
mpcstate(mpcobj).

UnmeasuredDisturbance — Unmeasured disturbance signal
[] (default) | array

Unmeasured disturbance signal for simulating disturbances occurring at the unmeasured disturbance
inputs of the simulation plant model, specified as an array with Nud columns and up to Ntrows, where

 mpcsimopt

3-37

Nud is the number of unmeasured disturbances, and Nt is the number of simulation steps. If you
specify fewer than Nt rows, then the values in the final row of the array are extended to the end of the
simulation.

InputNoise — Manipulated variable noise signal
[] (default) | array

Manipulated variable noise signal for simulating load disturbances occurring at the manipulated
variable inputs to the simulation plant model, specified as an array with Nmv columns and up to
Ntrows, where Nmv is the number of manipulated variables, and Nt is the number of simulation steps.
If you specify fewer than Nt rows, then the values in the final row of the array are extended to the end
of the simulation.

OutputNoise — Measured output noise signal
[] (default) | array

Measured output noise signal for simulating disturbances occurring at the measured output of the
simulation plant model, specified as an array with Ny columns and up to Ntrows, where Ny is the
number of measured outputs, and Nt is the number of simulation steps. If you specify fewer than Nt
rows, then the values in the final row of the array are extended to the end of the simulation.

RefLookAhead — Option to use reference previewing
'off' (default) | 'on'

Option to use reference previewing during simulation, specified as one of the following:

• 'off' — Do not use reference previewing.
• 'on' — Use reference previewing.

When simulating an explicit MPC controller, you must set RefLookAhead to 'off'.

MDLookAhead — Option to use measured disturbance previewing
'off' (default) | 'on'

Option to use measured disturbance previewing during simulation, specified as one of the following:

• 'off' — Do not use measured disturbance previewing.
• 'on' — Use measured disturbance previewing.

When simulating an explicit MPC controller, you must set MDLookAhead to 'off'.

Constraints — Enable constraints
'on' (default) | 'off'

Option to enable constraints during simulation, specified as one of the following:

• 'on' — Use the constraints defined in the controller during simulation.
• 'off' — Simulate the controller without any constraints.

Model — Plant model to use for simulation
[] (default) | LTI system object | structure

Plant model to use for simulation, specified as one of the following:

3 Objects

3-38

• [] — Simulate the controller against its internal plant model (mpcobj.Model). In this case, there
is no plant-model mismatch.

• LTI system object — Simulate the controller against the specified LTI plant. The specified plant
must have the same input and output group configuration as mpcobj.Model.Plant. To set this
configuration, use setmpcsignals.

• Structure with fields Plant and Nominal — Simulate the controller using the specified plant
(Plant) and nominal conditions (Nominal).

Model sets the actual plant (not the internal prediction model of the controller) to be used in closed-
loop or open-loop simulations. To test the controller robustness against a plant model mismatch, use
this option to specify a plant that differs from the controller internal plant model.

If you do not specify nominal conditions, Model.Nominal.U and Model.Nominal.Y are inherited
from mpcobj.Model.Nominal. Model.Nominal.X and Model.Nominal.DX are only inherited if
both plants are state-space objects with the same state dimension.

To specify the initial state of this simulation plant model, use the PlantInitialState option.

StatusBar — Display the simulation status bar
'off' (default) | 'on'

Option to display the simulation status bar, specified as one of the following:

• 'off' — Do not display the status bar.
• 'on' — Display the status bar.

MVSignal — Sequence of manipulated variables
[] (default) | array

Sequence of manipulated variables to use during open-loop simulation, specified as an array with Nmv
columns and up to Ntrows, where Nmv is the number of manipulated variables, and Nt is the number
of simulation steps. If you specify fewer than Nt rows, then the values in the final row of the array are
extended to the end of the simulation. The specified manipulated variable signals must include any
manipulated variable offsets. If MVSignal is an empty array (default) then a value of 0 is assumed for
all the manipulated variables.

MVSignal is ignored if OpenLoop is set to 'off'.

OpenLoop — Run an open-loop simulation
'off' (default) | 'on'

Option to run an open-loop simulation, specified as one of the following:

• 'off' — Perform a closed-loop simulation.
• 'on' — Perform an open-loop simulation.

ShowOutputNoise — Include output noise in measured output plots
'off' (default) | 'on'

Option to include output noise in measured output plots, specified as one of the following:

• 'off' — Do not include output noise in plots
• 'on' — Include output noise in plots

 mpcsimopt

3-39

Enable this option to view the output disturbance rejection behavior of the controller during closed-
loop simulations.

Object Functions
sim Simulate an MPC controller in closed loop with a linear plant

Examples

Simulate MPC Control with Plant Model Mismatch

Simulate the MPC control of a multi-input, multi-output (MIMO) system with a mismatch between the
predicted and actual plant models. The system has two manipulated variables, two unmeasured
disturbances, and two measured outputs.

Define the predicted plant model.

p1 = tf(1,[1 2 1])*[1 1;0 1];
plantPredict = ss([p1 p1]);
plantPredict.InputName = {'mv1','mv2','umd3','umd4'};

Specify the MPC signal types.

plantPredict = setmpcsignals(plantPredict,'MV',[1 2],'UD',[3 4]);

Create the MPC controller.

mpcobj = mpc(plantPredict,1,40,2);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Define the unmeasured input disturbance model used by the controller.

distModel = eye(2,2)*ss(-0.5,1,1,0);
mpcobj.Model.Disturbance = distModel;

Define an actual plant model which differs from the predicted model and has unforeseen unmeasured
disturbance inputs.

p2 = tf(1.5,[0.1 1 2 1])*[1 1;0 1];
plantActual = ss([p2 p2 tf(1,[1 1])*[0;1]]);
plantActual = setmpcsignals(plantActual,'MV',[1 2],'UD',[3 4 5]);

Configure the unmeasured disturbance and output reference trajectories.

dist = ones(1,3);
refs = [1 2];

Create and configure a simulation option set.

options = mpcsimopt(mpcobj);
options.UnmeasuredDisturbance = dist;
options.Model = plantActual;

Simulate the system.

3 Objects

3-40

sim(mpcobj,20,refs,options)

-->Converting model to discrete time.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.
-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

 mpcsimopt

3-41

See Also
sim

Topics
“Simulate Linear MPC Controller with Nonlinear Plant using Successive Linearizations”

Introduced before R2006a

3 Objects

3-42

mpcstate
MPC controller state

Description
The mpcstate object represents the state of an implicit or explicit MPC controller. Use an mpcstate
object to initialize the controller object before simulation.

The controller state includes the:

• States of the plant, disturbance, and noise models of the controller.
• Manipulated variables used in the previous control interval.
• State covariance matrix for the controller.

mpcstate objects are updated during simulation using the internal state observer based on the
extended prediction model. The overall state is updated from the measured output ym(k) by a linear
state observer. For mode information, see “Controller State Estimation”.

Creation

Syntax
x = mpcstate(mpcobj)
x = mpcstate(mpcobj,plant,disturbance,noise,lastMove,covariance)

Description

x = mpcstate(mpcobj) creates a controller state object for the implicit or explicit MPC controller
mpcobj, setting the state object properties to their default values.

x = mpcstate(mpcobj,plant,disturbance,noise,lastMove,covariance) sets the
properties on page 3-43 of the state object to specified nondefault values. To use default values for a
given property, set the corresponding input argument to [].

Input Arguments

mpcobj — MPC controller object
mpc object | explicitMPC object

MPC controller object, specified as either an mpc or explicitMPC object.

Properties
Plant — Plant model state estimates
vector

 mpcstate

3-43

Plant model state estimates, specified as a vector. The plant state estimate values are in engineering
units and are absolute; that is, they include state offsets. By default, the Plant property is equal to
the Model.Nominal.X property of the controller used to create the mpcstate object.

If the controller plant model includes delays, the Plant property includes states that model the
delays. Therefore the number of elements in Plant is greater than the order of the nondelayed
controller plant model.

Disturbance — Disturbance model state estimates
vector

Disturbance model state estimates, specified as a vector. The disturbance state estimates include the
states of the input disturbance model followed by the states of the output disturbance model. By
default, the Disturbance property is a zero vector if the controller has disturbance model states and
empty otherwise.

To view the input and output disturbance models of your controller, use the getindist and
getoutdist functions, respectively.

Noise — Output measurement noise model state estimates
vector

Output measurement noise model state estimates, specified as a vector. By default, the Noise
property is a zero vector if the controller has noise model states and empty otherwise.

LastMove — Optimal manipulated variable control move from previous control interval
vector

Optimal manipulated variable control move from previous control interval, specified as a vector with
length equal to the number of manipulated variables. By default, the LastMove property is equal to
the nominal values of the manipulated variables.

During simulation, the mpcmove function automatically sets the value of LastMove.

When the actual control signals sent to the plant in the previous control interval do not match the
calculated optimal value, do not use LastMove to specify the actual control signals. Instead, do so
using mpcmoveopt.

Covariance — Covariance matrix for controller state estimates
symmetrical matrix

Covariance matrix for controller state estimates, specified as an Ns-by-Ns symmetric matrix, where Ns
is the sum of the number states contained in the Plant, Disturbance, and Noise fields. T

If the controller is employing default state estimation the default covariance matrix is the steady-state
covariance computed according to the assumptions in “Controller State Estimation”. For more
information, see the description of the P output argument of the kalmd function.

If the controller uses custom state estimation, the Covariance property is empty and not used.

During simulation, do not modify Covariance. The mpcmove function automatically sets the value of
Covariance at each control interval.

3 Objects

3-44

Object Functions
mpcmove Compute optimal control action and update controller states
mpcmoveAdaptive Compute optimal control with prediction model updating
mpcmoveMultiple Compute gain-scheduling MPC control action at a single time instant
mpcmoveExplicit Compute optimal control using explicit MPC

Examples

Get Controller State Object

Create a model predictive controller for a single-input-single-output (SISO) plant. For this example,
the plant includes an input delay of 0.4 time units, and the control interval to 0.2 time units.

H = tf(1,[10 1],'InputDelay',0.4);
MPCobj = mpc(H,0.2);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Create the corresponding controller state object in which all states are at their default values.

xMPC = mpcstate(MPCobj)

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
-->Converting delays to states.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
MPCSTATE object with fields
 Plant: [0 0 0]
 Disturbance: 0
 Noise: [1x0 double]
 LastMove: 0
 Covariance: [4x4 double]

The plant model, H, is a first-order, continuous-time transfer function. The Plant property of the
mpcstate object contains two additional states to model the two intervals of delay. By default, the
controller contains a first-order output disturbance model (Disturbance property is a scalar) and a
static gain noise model (Noise property is empty).

You can access the properties of the controller state object using dot notation. For example, view the
default covariance matrix.

xMPC.Covariance

ans = 4×4

 0.0624 0.0000 0.0000 -0.0224
 0.0000 1.0000 0.0000 -0.0000
 0.0000 0.0000 1.0000 0.0000
 -0.0224 -0.0000 0.0000 0.2301

 mpcstate

3-45

See Also
getoutdist | setoutdist | setindist | getindist | getEstimator | setEstimator | mpcmove

Introduced before R2006a

3 Objects

3-46

nlmpc
Nonlinear model predictive controller

Description
A nonlinear model predictive controller computes optimal control moves across the prediction
horizon using a nonlinear prediction model, a nonlinear cost function, and nonlinear constraints. For
more information on nonlinear MPC, see “Nonlinear MPC”.

Creation

Syntax
nlobj = nlmpc(nx,ny,nu)

nlobj = nlmpc(nx,ny,'MV',mvIndex,'MD',mdIndex)
nlobj = nlmpc(nx,ny,'MV',mvIndex,'UD',udIndex)
nlobj = nlmpc(nx,ny,'MV',mvIndex,'MD',mdIndex,'UD',udIndex)

Description

nlobj = nlmpc(nx,ny,nu) creates an nlmpc object whose prediction model has nx states, ny
outputs, and nu inputs, where all inputs are manipulated variables. Use this syntax if your model has
no measured or unmeasured disturbance inputs.

nlobj = nlmpc(nx,ny,'MV',mvIndex,'MD',mdIndex) creates an nlmpc object whose
prediction model has measured disturbance inputs. Specify the input indices for the manipulated
variables, mvIndex, and measured disturbances, mdIndex.

nlobj = nlmpc(nx,ny,'MV',mvIndex,'UD',udIndex) creates an nlmpc object whose
prediction model has unmeasured disturbance inputs. Specify the input indices for the manipulated
variables and unmeasured disturbances, udIndex.

nlobj = nlmpc(nx,ny,'MV',mvIndex,'MD',mdIndex,'UD',udIndex) creates an nlmpc
object whose prediction model has both measured and unmeasured disturbance inputs. Specify the
input indices for the manipulated variables, measured disturbances, and unmeasured disturbances.

Input Arguments

nx — Number of prediction model states
positive integer

Number of prediction model states, specified as a positive integer. This value is stored in the
Dimensions.NumberOfStates controller read-only property. You cannot change the number of
states after creating the controller object.

ny — Number of prediction model outputs
positive integer

 nlmpc

3-47

Number of prediction model outputs, specified as a positive integer. This value is stored in the
Dimensions.NumberOfOutputs controller read-only property. You cannot change the number of
outputs after creating the controller object.

nu — Number of prediction model inputs
positive integer

Number of prediction model inputs, which are all set to be manipulated variables, specified as a
positive integer. This value is stored in the Dimensions.NumberOfInputs controller read-only
property. You cannot change the number of manipulated variables after creating the controller object.

mvIndex — Manipulated variable indices
vector of positive integers

Manipulated variable indices, specified as a vector of positive integers. This value is stored in the
Dimensions.MVIndex controller read-only property. You cannot change these indices after creating
the controller object.

The combined set of indices from mvIndex, mdIndex, and udIndex must contain all integers from 1
through Nu, where Nu is the number of prediction model inputs.

mdIndex — Measured disturbance indices
vector of positive integers

Measured disturbance indices, specified as a vector of positive integers. This value is stored in the
Dimensions.MDIndex controller read-only property. You cannot change these indices after creating
the controller object.

The combined set of indices from mvIndex, mdIndex, and udIndex must contain all integers from 1
through Nu, where Nu is the number of prediction model inputs.

udIndex — Unmeasured disturbance indices
vector of positive integers

Unmeasured disturbance indices, specified as a vector of positive integers. This value is stored in the
Dimensions.UDIndex controller read-only property. You cannot change these indices after creating
the controller object.

The combined set of indices from mvIndex, mdIndex, and udIndex must contain all integers from 1
through Nu, where Nu is the number of prediction model inputs.

Properties
Ts — Prediction model sample time
1 (default) | positive finite scalar

Prediction model sample time, specified as a positive finite scalar. The controller uses a discrete-time
model with a sample time of Ts for prediction. If you specify a continuous-time prediction model
(Model.IsContinuousTime is true), then the controller discretizes the model using the built-in
implicit trapezoidal rule with a sample time of Ts.

PredictionHorizon — Prediction horizon
10 (default) | positive integer

3 Objects

3-48

Prediction horizon steps, specified as a positive integer. The product of PredictionHorizon and Ts
is the prediction time, that is, how far the controller looks into the future.

ControlHorizon — Control horizon
2 (default) | positive integer | vector of positive integers

Control horizon, specified as one of the following:

• Positive integer, m, between 1 and p, inclusive, where p is equal to PredictionHorizon. In this
case, the controller computes m free control moves occurring at times k through k+m–1, and
holds the controller output constant for the remaining prediction horizon steps from k+m through
k+p–1. Here, k is the current control interval.

• Vector of positive integers [m1, m2, …], specifying the lengths of blocking intervals. By default the
controller computes M blocks of free moves, where M is the number of blocking intervals. The
first free move applies to times k through k+m1–1, the second free move applies from time k+m1
through k+m1+m2–1, and so on. Using block moves can improve the robustness of your controller.
The sum of the values in ControlHorizon must match the prediction horizon p. If you specify a
vector whose sum is:

• Less than the prediction horizon, then the controller adds a blocking interval. The length of
this interval is such that the sum of the interval lengths is p. For example, if p=10 and you
specify a control horizon of ControlHorizon=[1 2 3], then the controller uses four
intervals with lengths [1 2 3 4].

• Greater than the prediction horizon, then the intervals are truncated until the sum of the
interval lengths is equal to p. For example, if p=10 and you specify a control horizon of
ControlHorizon= [1 2 3 6 7], then the controller uses four intervals with lengths [1 2
3 4].

Piecewise constant blocking moves are often too restrictive for optimal path planning applications. To
produce a less-restrictive, better-conditioned nonlinear programming problem, you can specify
piecewise linear manipulated variable blocking intervals. To do so, set the
Optimization.MVInterpolationOrder property of your nlmpc controller object to 1.

For more information on how manipulated variable blocking works with different interpolation
methods, see “Manipulated Variable Blocking”.

Dimensions — Prediction model dimensional information
structure

This property is read-only.

Prediction model dimensional information, specified when you create the controller and stored as a
structure with the following fields.

NumberOfStates — Number of states
positive integer

Number of states in the prediction model, specified as a positive integer. This value corresponds to
nx.

NumberOfOutputs — Number of outputs
positive integer

 nlmpc

3-49

Number of outputs in the prediction model, specified as a positive integer. This value corresponds to
ny.

NumberOfInputs — Number of inputs
positive integer

Number of inputs in the prediction model, specified as a positive integer. This value corresponds to
either nu or the sum of the lengths of mvIndex, mdIndex, and udIndex.

MVIndex — Manipulated variable indices
vector of positive integers

Manipulated variable indices for the prediction model, specified as a vector of positive integers. This
value corresponds to mvIndex.

MDIndex — Measured disturbance indices
vector of positive integers

Measured disturbance indices for the prediction model, specified as a vector of positive integers. This
value corresponds to mdIndex.

UDIndex — Unmeasured disturbance indices
vector of positive integers

Unmeasured disturbance indices for the prediction model, specified as a vector of positive integers.
This value corresponds to udIndex.

Model — Prediction model
structure

Prediction model, specified as a structure with the following fields.

StateFcn — State function
string | character vector | function handle

State function, specified as a string, character vector, or function handle. For a continuous-time
prediction model, StateFcn is the state derivative function. For a discrete-time prediction model,
StateFcn is the state update function.

If your state function is continuous-time, the controller automatically discretizes the model using the
implicit trapezoidal rule. This method can handle moderately stiff models, and its prediction accuracy
depends on the controller sample time Ts; that is, a large sample time leads to inaccurate prediction.

If the default discretization method does not provide satisfactory prediction for your application, you
can specify your own discrete-time prediction model that uses a different method, such as the
multistep forward Euler rule.

You can specify your state function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.StateFcn = "myStateFunction";
• Handle to a function in the current working folder or on the MATLAB path

Model.StateFcn = @myStateFunction;

3 Objects

3-50

• Anonymous function

Model.StateFcn = @(x,u,params) myStateFunction(x,u,params)

For more information, see “Specify Prediction Model for Nonlinear MPC”.

OutputFcn — Output function
[] (default) | string | character vector | function handle

Output function, specified as a string, character vector, or function handle. If the number of states
and outputs of the prediction model are the same, you can omit OutputFcn, which implies that all
states are measurable; that is, each output corresponds to one state.

Note You output function cannot have direct feedthrough from any manipulated variable to any
output at any time.

You can specify your output function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.OutputFcn = "myOutputFunction";
• Handle to a function in the current working folder or on the MATLAB path

Model.OutputFcn = @myOutputFunction;
• Anonymous function

Model.OutputFcn = @(x,u,params) myOutputFunction(x,u,params)

For more information, see “Specify Prediction Model for Nonlinear MPC”.

IsContinuousTime — Flag indicating prediction model time domain
true (default) | false

Flag indicating the prediction model time domain, specified as one of the following:

• true — Continuous-time prediction model. In this case, the controller automatically discretizes
the model during prediction using Ts.

• false — Discrete-time prediction model. In this case, Ts is the sample time of the model.

Note IsContinuousTime must be consistent with the functions specified in Model.StateFcn and
Model.OutputFcn.

If IsContinuousTime is true, StateFcn must return the derivative of the state with respect to
time, at the current time. Otherwise StateFcn must return the state at the next control interval.

NumberOfParameters — Number of optional model parameters
0 (default) | nonnegative integer

Number of optional model parameters used by the prediction model, custom cost function, and
custom constraint functions, specified as a nonnegative integer. The number of parameters includes
all the parameters used by these functions. For example, if the state function uses only parameter p1,

 nlmpc

3-51

the constraint functions use only parameter p2, and the cost function uses only parameter p3, then
NumberOfParameters is 3.

States — State information, bounds, and scale factors
structure array

State information, bounds, and scale factors, specified as a structure array with Nx elements, where
Nx is the number of states. Each structure element has the following fields.

Min — State lower bound
-Inf (default) | scalar | vector

State lower bound, specified as a scalar or vector. By default, this lower bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

State bounds are always hard constraints.

Max — State upper bound
Inf (default) | scalar | vector

State upper bound, specified as a scalar or vector. By default, this upper bound is +Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

State bounds are always hard constraints.

Name — State name
string | character vector

State name, specified as a string or character vector. The default state name is "x#", where # is its
state index.

Units — State units
"" (default) | string | character vector

State units, specified as a string or character vector.

ScaleFactor — State scale factor
1 (default) | positive finite scalar

State scale factor, specified as a positive finite scalar. In general, use the operating range of the state.
Specifying the proper scale factor can improve numerical conditioning for optimization.

OutputVariables — Output variable information, bounds, and scale factors
structure array

3 Objects

3-52

Output variable (OV) information, bounds, and scale factors, specified as a structure array with Ny
elements, where Ny is the number of output variables. To access this property, you can use the alias
OV instead of OutputVariables.

Each structure element has the following fields.

Min — OV lower bound
-Inf (default) | scalar | vector

OV lower bound, specified as a scalar or vector. By default, this lower bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

Max — OV upper bound
Inf (default) | scalar | vector

OV upper bound, specified as a scalar or vector. By default, this upper bound is +Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

MinECR — OV lower bound softness
1 (default) | nonnegative finite scalar | vector

OV lower bound softness, where a larger ECR value indicates a softer constraint, specified as a
nonnegative finite scalar or vector. By default, OV upper bounds are soft constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k+1 to time k+p, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.

MaxECR — OV upper bound softness
1 (default) | nonnegative finite scalar | vector

OV upper bound softness, where a larger ECR value indicates a softer constraint, specified as a
nonnegative finite scalar or vector. By default, OV lower bounds are soft constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k+1 to time k+p, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.

Name — OV name
string | character vector

 nlmpc

3-53

OV name, specified as a string or character vector. The default OV name is "y#", where # is its
output index.

Units — OV units
"" (default) | string | character vector

OV units, specified as a string or character vector.

ScaleFactor — OV scale factor
1 (default) | positive finite scalar

OV scale factor, specified as a positive finite scalar. In general, use the operating range of the output
variable. Specifying the proper scale factor can improve numerical conditioning for optimization.

ManipulatedVariables — Manipulated variable information, bounds, and scale factors
structure array

Manipulated Variable (MV) information, bounds, and scale factors, specified as a structure array with
Nmv elements, where Nmv is the number of manipulated variables. To access this property, you can use
the alias MV instead of ManipulatedVariables.

Each structure element has the following fields.

Min — MV lower bound
-Inf (default) | scalar | vector

MV lower bound, specified as a scalar or vector. By default, this lower bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

Max — MV upper bound
Inf (default) | scalar | vector

MV upper bound, specified as a scalar or vector. By default, this upper bound is +Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

MinECR — MV lower bound softness
0 (default) | nonnegative scalar | vector

MV lower bound softness, where a larger ECR value indicates a softer constraint, specified as a
nonnegative scalar or vector. By default, MV lower bounds are hard constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k to time k+p–1, specify a vector of up to
p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.

3 Objects

3-54

MaxECR — MV upper bound
0 (default) | nonnegative scalar | vector

MV upper bound softness, where a larger ECR value indicates a softer constraint, specified as a
nonnegative scalar or vector. By default, MV upper bounds are hard constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR value over the prediction horizon from time k to time k+p–1, specify a vector of up to
p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR value is used for the remaining steps of the prediction horizon.

RateMin — MV rate of change lower bound
-Inf (default) | nonpositive scalar | vector

MV rate of change lower bound, specified as a nonpositive scalar or vector. The MV rate of change is
defined as MV(k) - MV(k–1), where k is the current time. By default, this lower bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

RateMax — MV rate of change upper bound
Inf (default) | nonnegative scalar | vector

MV rate of change upper bound, specified as a nonnegative scalar or vector. The MV rate of change is
defined as MV(k) - MV(k–1), where k is the current time. By default, this upper bound is +Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

RateMinECR — MV rate of change lower bound softness
0 (default) | nonnegative finite scalar | vector

MV rate of change lower bound softness, where a larger ECR value indicates a softer constraint,
specified as a nonnegative finite scalar or vector. By default, MV rate of change lower bounds are
hard constraints.

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR values over the prediction horizon from time k to time k+p–1, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR values are used for the remaining steps of the prediction horizon.

RateMaxECR — MV rate of change upper bound softness
0 (default) | nonnegative finite scalar | vector

MV rate of change upper bound softness, where a larger ECR value indicates a softer constraint,
specified as a nonnegative finite scalar or vector. By default, MV rate of change upper bounds are
hard constraints.

 nlmpc

3-55

To use the same ECR value across the prediction horizon, specify a scalar value.

To vary the ECR values over the prediction horizon from time k to time k+p–1, specify a vector of up
to p values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p
values, the final ECR values are used for the remaining steps of the prediction horizon.

Name — MV name
string | character vector

MV name, specified as a string or character vector. The default MV name is "u#", where # is its input
index.

Units — MV units
"" (default) | string | character vector

MV units, specified as a string or character vector.

ScaleFactor — MV scale factor
1 (default) | positive finite scalar

MV scale factor, specified as a positive finite scalar. In general, use the operating range of the
manipulated variable. Specifying the proper scale factor can improve numerical conditioning for
optimization.

MeasuredDisturbances — Measured disturbance information and scale factors
structure array

Measured disturbance (MD) information and scale factors, specified as a structure array with Nmd
elements, where Nmd is the number of measured disturbances. If your model does not have measured
disturbances, then MeasuredDisturbances is []. To access this property, you can use the alias MD
instead of MeasuredDisturbances.

Each structure element has the following fields.

Name — MD name
string | character vector

MD name, specified as a string or character vector. The default MD name is "u#", where # is its input
index.

Units — MD units
"" (default) | string | character vector

MD units, specified as a string or character vector.

ScaleFactor — MD scale factor
1 (default) | positive finite scalar

MD scale factor, specified as a positive finite scalar. In general, use the operating range of the
disturbance. Specifying the proper scale factor can improve numerical conditioning for optimization.

Weights — Standard cost function tuning weights
structure

Standard cost function tuning weights, specified as a structure. The controller applies these weights
to the scaled variables. Therefore, the tuning weights are dimensionless values.

3 Objects

3-56

Note If you define a custom cost function using Optimization.CustomCostFcn and set
Optimization.ReplaceStandardCost to true, then the controller ignores the standard cost
function tuning weights in Weights.

Weights has the following fields.

ManipulatedVariables — Manipulated variable tuning weights
row vector | array

Manipulated variable tuning weights, which penalize deviations from MV targets, specified as a row
vector or array of nonnegative values. The default weight for all manipulated variables is 0.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable tuning weights for one prediction horizon step. If you specify
fewer than p rows, the weights in the final row are used for the remaining steps of the prediction
horizon.

To specify MV targets at run time, create an nlmpcmoveopt object, and set its MVTarget property.

ManipulatedVariablesRate — Manipulated variable rate tuning weights
row vector | array

Manipulated variable rate tuning weights, which penalize large changes in control moves, specified
as a row vector or array of nonnegative values. The default weight for all manipulated variable rates
is 0.1.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable rate tuning weights for one prediction horizon step. If you
specify fewer than p rows, the weights in the final row are used for the remaining steps of the
prediction horizon.

OutputVariables — Output variable tuning weights
vector | array

Output variable tuning weights, which penalize deviation from output references, specified as a row
vector or array of nonnegative values. The default weight for all output variables is 1.

To use the same weights across the prediction horizon, specify a row vector of length Ny, where Ny is
the number of output variables.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, specify an array
with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the output variable tuning weights for one prediction horizon step. If you specify fewer
than p rows, the weights in the final row are used for the remaining steps of the prediction horizon.

 nlmpc

3-57

ECR — Slack variable tuning weight
1e5 (default) | positive scalar

Slack variable tuning weight, specified as a positive scalar.

Optimization — Custom optimization functions and solver
structure

Custom optimization functions and solver, specified as a structure with the following fields.

CustomCostFcn — Custom cost function
[] | string | character vector | function handle

Custom cost function, specified as one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomCostFcn = "myCostFunction";
• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomCostFcn = @myCostFunction;
• Anonymous function

Optimization.CustomCostFcn = @(X,U,e,data,params) myCostFunction(X,U,e,data,params);

Your cost function must have the signature:

function J = myCostFunction(X,U,e,data,params)

For more information, see “Specify Cost Function for Nonlinear MPC”.

ReplaceStandardCost — Flag indicating whether to replace the standard cost function
true (default) | false

Flag indicating whether to replace the standard cost function with the custom cost function, specified
as one of the following:

• true — The controller uses the custom cost alone as the objective function during optimization. In
this case, the Weights property of the controller is ignored.

• false — The controller uses the sum of the standard cost and custom cost as the objective
function during optimization.

If you do not specify a custom cost function using CustomCostFcn, then the controller ignores
RepalceStandardCost.

For more information, see “Specify Cost Function for Nonlinear MPC”.

CustomEqConFcn — Custom equality constraint function
[] (default) | string | character vector | function handle

Custom equality constraint function, specified as one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomEqConFcn = "myEqConFunction";

3 Objects

3-58

• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomEqConFcn = @myEqConFunction;
• Anonymous function

Optimization.CustomEqConFcn = @(X,U,data,params) myEqConFunction(X,U,data,params);

Your equality constraint function must have the signature:

function ceq = myEqConFunction(X,U,data,p1,p2,...)

For more information, see “Specify Constraints for Nonlinear MPC”.

CustomIneqConFcn — Custom inequality constraint function
[] (default) | string | character vector | function handle

Custom inequality constraint function, specified as one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomIneqConFcn = "myIneqConFunction";
• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomIneqConFcn = @myIneqConFunction;
• Anonymous function

Optimization.CustomIneqConFcn = @(X,U,e,data,params) myIneqConFunction(X,U,e,data,params);

Your equality constraint function must have the signature:

function cineq = myIneqConFunction(X,U,e,data,params)

For more information, see “Specify Constraints for Nonlinear MPC”.

CustomSolverFcn — Custom nonlinear programming solver
[] (default) | string | character vector | function handle

Custom nonlinear programming solver function, specified as a string, character vector, or function
handle. If you do not have Optimization Toolbox software, you must specify your own custom
nonlinear programming solver. You can specify your custom solver function in one of the following
ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomSolverFcn = "myNLPSolver";
• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomSolverFcn = @myNLPSolver;

For more information, see “Configure Optimization Solver for Nonlinear MPC”.

SolverOptions — Solver options
options object for fmincon | []

Solver options, specified as an options object for fmincon or [].

 nlmpc

3-59

If you have Optimization Toolbox software, SolverOptions contains an options object for the
fmincon solver.

If you do not have Optimization Toolbox, SolverOptions is [].

For more information, see “Configure Optimization Solver for Nonlinear MPC”.

RunAsLinearMPC — Flag indicating whether to simulate as a linear controller
"off" (default) | "Adaptive" | "TimeVarying"

Flag indicating whether to simulate as a linear controller, specified as one of the following:

• "off" — Simulate the controller as a nonlinear controller with a nonlinear prediction model.
• "Adaptive" — For each control interval, a linear model is obtained from the specified nonlinear

state and output functions at the current operating point and used across the prediction horizon.
To determine if an adaptive MPC controller provides comparable performance to the nonlinear
controller, use this option. For more information on adaptive MPC, see “Adaptive MPC”.

• "TimeVarying" — For each control interval, p linear models are obtained from the specified
nonlinear state and output functions at the p operating points predicted from the previous
interval, one for each prediction horizon step. To determine if a linear time-varying MPC controller
provides comparable performance to the nonlinear controller, use this option. For more
information on time-varying MPC, see “Time-Varying MPC”.

To use the either the "Adaptive" or "TimeVarying" option, your controller must have no custom
constraints and no custom cost function.

For an example that simulates a nonlinear MPC controller as a linear controller, see “Optimization
and Control of a Fed-Batch Reactor Using Nonlinear MPC”.

UseSuboptimalSolution — Flag indicating whether a suboptimal solution is acceptable
false (default) | true

Flag indicating whether a suboptimal solution is acceptable, specified as a logical value. When the
nonlinear programming solver reaches the maximum number of iterations without finding a solution
(the exit flag is 0), the controller:

• Freezes the MV values if UseSuboptimalSolution is false
• Applies the suboptimal solution found by the solver after the final iteration if

UseSuboptimalSolution is true

To specify the maximum number of iterations, use Optimization.SolverOptions.MaxIter.

MVInterpolationOrder — Linear interpolation order used for block moves
0 (default) | 1

Linear interpolation order used by block moves, specified as one of the following:

• 0 — Use piecewise constant manipulated variable intervals.
• 1 — Use piecewise linear manipulated variable intervals.

If the control horizon is a scalar, then the controller ignores MVInterpolationOrder.

For more information on manipulated variable blocking, see “Manipulated Variable Blocking”.

3 Objects

3-60

Jacobian — Jacobians of model functions, and custom cost and constraint functions
structure

Jacobians of model functions, and custom cost and constraint functions, specified as a structure. As a
best practice, use Jacobians whenever they are available, since they improve optimization efficiency.
If you do not specify a Jacobian for a given function, the nonlinear programming solver must
numerically compute the Jacobian.

The Jacobian structure contains the following fields.

StateFcn — Jacobian of state function
[] (default) | string | character vector | function handle

Jacobian of state function z from Model.StateFcn, specified as one of the following

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.StateFcn = "myStateJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Model.StateFcn = @myStateJacobian;
• Anonymous function

Model.StateFcn = @(x,u,params) myStateJacobian(x,u,params)

For more information, see “Specify Prediction Model for Nonlinear MPC”.

OutputFcn — Jacobian of output function
[] (default) | string | character vector | function handle

Jacobian of output function y from Model.OutputFcn, specified as one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.StateFcn = "myOutputJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Model.StateFcn = @myOutputJacobian;
• Anonymous function

Model.StateFcn = @(x,u,params) myOutputJacobian(x,u,params)

For more information, see “Specify Prediction Model for Nonlinear MPC”.

CustomCostFcn — Jacobian of custom cost function
[] | string | character vector | function handle

Jacobian of custom cost function J from Optimization.CustomCostFcn, specified as one of the
following:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Jacobian.CustomCostFcn = "myCostJacobian";

 nlmpc

3-61

• Handle to a function in the current working folder or on the MATLAB path

Jacobian.CustomCostFcn = @myCostJacobian;
• Anonymous function

Jacobian.CustomCostFcn = @(X,U,e,data,params) myCostJacobian(X,U,e,data,params)

Your cost Jacobian function must have the signature:

function [G,Gmv,Ge] = myCostJacobian(X,U,e,data,params)

For more information, see “Specify Cost Function for Nonlinear MPC”.

CustomEqConFcn — Jacobian of custom equality constraints
[] (default) | string | character vector | function handle

Jacobian of custom equality constraints ceq from Optimization.CustomEqConFcn, specified as
one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Jacobian.CustomEqConFcn = "myEqConJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Jacobian.CustomEqConFcn = @myEqConJacobian;
• Anonymous function

Jacobian.CustomEqConFcn = @(X,U,data,params) myEqConJacobian(X,U,data,params);

Your equality constraint Jacobian function must have the signature:

function [G,Gmv] = myEqConJacobian(X,U,data,params)

For more information, see “Specify Constraints for Nonlinear MPC”.

CustomIneqConFcn — Jacobian of custom inequality constraints
[] (default) | string | character vector | function handle

Jacobian of custom inequality constraints c from Optimization.CustomIneqConFcn, specified as
one of the following:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Jacobian.CustomEqConFcn = "myIneqConJacobian";
• Handle to a function in the current working folder or on the MATLAB path

Jacobian.CustomEqConFcn = @myIneqConJacobian;
• Anonymous function

Jacobian.CustomEqConFcn = @(X,U,data,params) myIneqConJacobian(X,U,data,params);

Your inequality constraint Jacobian function must have the signature:

function [G,Gmv,Ge] = myIneqConJacobian(X,U,data,params)

For more information, see “Specify Constraints for Nonlinear MPC”.

3 Objects

3-62

Object Functions
nlmpcmove Compute optimal control action for nonlinear MPC controller
validateFcns Examine prediction model and custom functions of nlmpc or nlmpcMultistage

objects for potential problems
convertToMPC Convert nlmpc object into one or more mpc objects
createParameterBus Create Simulink bus object and configure Bus Creator block for passing model

parameters to Nonlinear MPC Controller block

Examples

Create Nonlinear MPC Controller with Discrete-Time Prediction Model

Create a nonlinear MPC controller with four states, two outputs, and one input.

nx = 4;
ny = 2;
nu = 1;
nlobj = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The discrete-time state function uses an optional parameter, the sample time Ts, to integrate the
continuous-time model. Therefore, you must specify the number of optional parameters as 1.

nlobj.Model.NumberOfParameters = 1;

Specify the output function for the controller. In this case, define the first and third states as outputs.
Even though this output function does not use the optional sample time parameter, you must specify
the parameter as an input argument (Ts).

nlobj.Model.OutputFcn = @(x,u,Ts) [x(1); x(3)];

Validate the prediction model functions for nominal states x0 and nominal inputs u0. Since the
prediction model uses a custom parameter, you must pass this parameter to validateFcns.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj, x0, u0, [], {Ts});

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

 nlmpc

3-63

Create Nonlinear MPC Controller with Measured and Unmeasured Disturbances

Create a nonlinear MPC controller with three states, one output, and four inputs. The first two inputs
are measured disturbances, the third input is the manipulated variable, and the fourth input is an
unmeasured disturbance.

nlobj = nlmpc(3,1,'MV',3,'MD',[1 2],'UD',4);

To view the controller state, output, and input dimensions and indices, use the Dimensions property
of the controller.

nlobj.Dimensions

ans = struct with fields:
 NumberOfStates: 3
 NumberOfOutputs: 1
 NumberOfInputs: 4
 MVIndex: 3
 MDIndex: [1 2]
 UDIndex: 4

Specify the controller sample time and horizons.

nlobj.Ts = 0.5;
nlobj.PredictionHorizon = 6;
nlobj.ControlHorizon = 3;

Specify the prediction model state function, which is in the file exocstrStateFcnCT.m.

nlobj.Model.StateFcn = 'exocstrStateFcnCT';

Specify the prediction model output function, which is in the file exocstrOutputFcn.m.

nlobj.Model.OutputFcn = 'exocstrOutputFcn';

Validate the prediction model functions using the initial operating point as the nominal condition for
testing and setting the unmeasured disturbance state, x0(3), to 0. Since the model has measured
disturbances, you must pass them to validateFcns.

x0 = [311.2639; 8.5698; 0];
u0 = [10; 298.15; 298.15];
validateFcns(nlobj,x0,u0(3),u0(1:2)');

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Validate Nonlinear MPC Prediction Model and Custom Functions

Create nonlinear MPC controller with six states, six outputs, and four inputs.

nx = 6;
ny = 6;

3 Objects

3-64

nu = 4;
nlobj = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the controller sample time and horizons.

Ts = 0.4;
p = 30;
c = 4;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;
nlobj.ControlHorizon = c;

Specify the prediction model state function and the Jacobian of the state function. For this example,
use a model of a flying robot.

nlobj.Model.StateFcn = "FlyingRobotStateFcn";
nlobj.Jacobian.StateFcn = "FlyingRobotStateJacobianFcn";

Specify a custom cost function for the controller that replaces the standard cost function.

nlobj.Optimization.CustomCostFcn = @(X,U,e,data) Ts*sum(sum(U(1:p,:)));
nlobj.Optimization.ReplaceStandardCost = true;

Specify a custom constraint function for the controller.

nlobj.Optimization.CustomEqConFcn = @(X,U,data) X(end,:)';

Validate the prediction model and custom functions at the initial states (x0) and initial inputs (u0) of
the robot.

x0 = [-10;-10;pi/2;0;0;0];
u0 = zeros(nu,1);
validateFcns(nlobj,x0,u0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Create Linear MPC Controllers from Nonlinear MPC Controller

Create a nonlinear MPC controller with four states, one output variable, one manipulated variable,
and one measured disturbance.

nlobj = nlmpc(4,1,'MV',1,'MD',2);

Specify the controller sample time and horizons.

nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 3;

Specify the state function of the prediction model.

 nlmpc

3-65

nlobj.Model.StateFcn = 'oxidationStateFcn';

Specify the prediction model output function and the output variable scale factor.

nlobj.Model.OutputFcn = @(x,u) x(3);
nlobj.OutputVariables.ScaleFactor = 0.03;

Specify the manipulated variable constraints and scale factor.

nlobj.ManipulatedVariables.Min = 0.0704;
nlobj.ManipulatedVariables.Max = 0.7042;
nlobj.ManipulatedVariables.ScaleFactor = 0.6;

Specify the measured disturbance scale factor.

nlobj.MeasuredDisturbances.ScaleFactor = 0.5;

Compute the state and input operating conditions for three linear MPC controllers using the fsolve
function.

options = optimoptions('fsolve','Display','none');

uLow = [0.38 0.5];
xLow = fsolve(@(x) oxidationStateFcn(x,uLow),[1 0.3 0.03 1],options);

uMedium = [0.24 0.5];
xMedium = fsolve(@(x) oxidationStateFcn(x,uMedium),[1 0.3 0.03 1],options);

uHigh = [0.15 0.5];
xHigh = fsolve(@(x) oxidationStateFcn(x,uHigh),[1 0.3 0.03 1],options);

Create linear MPC controllers for each of these nominal conditions.

mpcobjLow = convertToMPC(nlobj,xLow,uLow);
mpcobjMedium = convertToMPC(nlobj,xMedium,uMedium);
mpcobjHigh = convertToMPC(nlobj,xHigh,uHigh);

You can also create multiple controllers using arrays of nominal conditions. The number of rows in
the arrays specifies the number controllers to create. The linear controllers are returned as cell array
of mpc objects.

u = [uLow; uMedium; uHigh];
x = [xLow; xMedium; xHigh];
mpcobjs = convertToMPC(nlobj,x,u);

View the properties of the mpcobjLow controller.

mpcobjLow

MPC object (created on 26-Feb-2022 20:07:05):

Sampling time: 1 (seconds)
Prediction Horizon: 10
Control Horizon: 3

Plant Model:

 1 manipulated variable(s) -->| 4 states |

3 Objects

3-66

 | |--> 1 measured output(s)
 1 measured disturbance(s) -->| 2 inputs |
 | |--> 0 unmeasured output(s)
 0 unmeasured disturbance(s) -->| 1 outputs |

Indices:
 (input vector) Manipulated variables: [1]
 Measured disturbances: [2]
 (output vector) Measured outputs: [1]

Disturbance and Noise Models:
 Output disturbance model: default (type "getoutdist(mpcobjLow)" for details)
 Measurement noise model: default (unity gain after scaling)

Weights:
 ManipulatedVariables: 0
 ManipulatedVariablesRate: 0.1000
 OutputVariables: 1
 ECR: 100000

State Estimation: Default Kalman Filter (type "getEstimator(mpcobjLow)" for details)

Constraints:
 0.0704 <= u1 <= 0.7042, u1/rate is unconstrained, y1 is unconstrained

Plan Optimal Trajectory Using Nonlinear MPC

Create a nonlinear MPC controller with six states, six outputs, and four inputs.

nx = 6;
ny = 6;
nu = 4;
nlobj = nlmpc(nx,ny,nu);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the controller sample time and horizons.

Ts = 0.4;
p = 30;
c = 4;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = p;
nlobj.ControlHorizon = c;

Specify the prediction model state function and the Jacobian of the state function. For this example,
use a model of a flying robot.

nlobj.Model.StateFcn = "FlyingRobotStateFcn";
nlobj.Jacobian.StateFcn = "FlyingRobotStateJacobianFcn";

Specify a custom cost function for the controller that replaces the standard cost function.

nlobj.Optimization.CustomCostFcn = @(X,U,e,data) Ts*sum(sum(U(1:p,:)));
nlobj.Optimization.ReplaceStandardCost = true;

 nlmpc

3-67

Specify a custom constraint function for the controller.

nlobj.Optimization.CustomEqConFcn = @(X,U,data) X(end,:)';

Specify linear constraints on the manipulated variables.

for ct = 1:nu
 nlobj.MV(ct).Min = 0;
 nlobj.MV(ct).Max = 1;
end

Validate the prediction model and custom functions at the initial states (x0) and initial inputs (u0) of
the robot.

x0 = [-10;-10;pi/2;0;0;0];
u0 = zeros(nu,1);
validateFcns(nlobj,x0,u0);

Model.StateFcn is OK.
Jacobian.StateFcn is OK.
No output function specified. Assuming "y = x" in the prediction model.
Optimization.CustomCostFcn is OK.
Optimization.CustomEqConFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Compute the optimal state and manipulated variable trajectories, which are returned in the info.

[~,~,info] = nlmpcmove(nlobj,x0,u0);

Slack variable unused or zero-weighted in your custom cost function. All constraints will be hard.

Plot the optimal trajectories.

FlyingRobotPlotPlanning(info,Ts)

Optimal fuel consumption = 1.884953

3 Objects

3-68

 nlmpc

3-69

3 Objects

3-70

Simulate Closed-Loop Control using Nonlinear MPC Controller

Create a nonlinear MPC controller with four states, two outputs, and one input.

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more OVs because there are fewer MVs than OVs.

Specify the sample time and horizons of the controller.

Ts = 0.1;
nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDT0.m. This discrete-time
model integrates the continuous time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDT0";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter, Ts, to represent the sample time. Specify the
number of parameters.

 nlmpc

3-71

nlobj.Model.NumberOfParameters = 1;

Specify the output function of the model, passing the sample time parameter as an input argument.

nlobj.Model.OutputFcn = @(x,u,Ts) [x(1); x(3)];

Define standard constraints for the controller.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.OV(1).Min = -10;
nlobj.OV(1).Max = 10;
nlobj.MV.Min = -100;
nlobj.MV.Max = 100;

Validate the prediction model functions.

x0 = [0.1;0.2;-pi/2;0.3];
u0 = 0.4;
validateFcns(nlobj, x0, u0, [], {Ts});

Model.StateFcn is OK.
Model.OutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Only two of the plant states are measurable. Therefore, create an extended Kalman filter for
estimating the four plant states. Its state transition function is defined in pendulumStateFcn.m and
its measurement function is defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn,@pendulumMeasurementFcn);

Define initial conditions for the simulation, initialize the extended Kalman filter state, and specify a
zero initial manipulated variable value.

x = [0;0;-pi;0];
y = [x(1);x(3)];
EKF.State = x;
mv = 0;

Specify the output reference value.

yref = [0 0];

Create an nlmpcmoveopt object, and specify the sample time parameter.

nloptions = nlmpcmoveopt;
nloptions.Parameters = {Ts};

Run the simulation for 10 seconds. During each control interval:

1 Correct the previous prediction using the current measurement.
2 Compute optimal control moves using nlmpcmove. This function returns the computed optimal

sequences in nloptions. Passing the updated options object to nlmpcmove in the next control
interval provides initial guesses for the optimal sequences.

3 Predict the model states.
4 Apply the first computed optimal control move to the plant, updating the plant states.

3 Objects

3-72

5 Generate sensor data with white noise.
6 Save the plant states.

Duration = 10;
xHistory = x;
for ct = 1:(Duration/Ts)
 % Correct previous prediction
 xk = correct(EKF,y);
 % Compute optimal control moves
 [mv,nloptions] = nlmpcmove(nlobj,xk,mv,yref,[],nloptions);
 % Predict prediction model states for the next iteration
 predict(EKF,[mv; Ts]);
 % Implement first optimal control move
 x = pendulumDT0(x,mv,Ts);
 % Generate sensor data
 y = x([1 3]) + randn(2,1)*0.01;
 % Save plant states
 xHistory = [xHistory x];
end

Plot the resulting state trajectories.

figure
subplot(2,2,1)
plot(0:Ts:Duration,xHistory(1,:))
xlabel('time')
ylabel('z')
title('cart position')
subplot(2,2,2)
plot(0:Ts:Duration,xHistory(2,:))
xlabel('time')
ylabel('zdot')
title('cart velocity')
subplot(2,2,3)
plot(0:Ts:Duration,xHistory(3,:))
xlabel('time')
ylabel('theta')
title('pendulum angle')
subplot(2,2,4)
plot(0:Ts:Duration,xHistory(4,:))
xlabel('time')
ylabel('thetadot')
title('pendulum velocity')

 nlmpc

3-73

See Also
Blocks
Nonlinear MPC Controller

Topics
“Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC”
“Nonlinear Model Predictive Control of an Exothermic Chemical Reactor”
“Swing-up Control of a Pendulum Using Nonlinear Model Predictive Control”
“Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant”
“Plan and Execute Task- and Joint-Space Trajectories Using KINOVA Gen3 Manipulator” (Robotics
System Toolbox)
“Nonlinear MPC”

Introduced in R2018b

3 Objects

3-74

nlmpcMultistage
Multistage nonlinear model predictive controller

Description
A multistage nonlinear model predictive controller computes optimal control moves across the
prediction horizon p using a nonlinear prediction model. Stages include the current time k and all
prediction steps (from k+1 to k+p). You can specify different cost and constraint functions for each
stage. These functions rely only on plant information such as states and inputs available at that stage.
For more information on nonlinear MPC, see “Nonlinear MPC”.

Creation

Syntax
nlobj = nlmpcMultistage(p,nx,nu)

nlobj = nlmpcMultistage(p,nx,'MV',mvIndex,'MD',mdIndex)
nlobj = nlmpcMultistage(p,nx,'MV',mvIndex,'UD',udIndex)
nlobj = nlmpcMultistage(p,nx,'MV',mvIndex,'MD',mdIndex,'UD',udIndex)

Description

nlobj = nlmpcMultistage(p,nx,nu) creates an nlmpcMultistage object with a prediction
horizon p, whose prediction model has nx states and nu inputs, and where all inputs are manipulated
variables. Use this syntax if your model has no measured or unmeasured disturbance inputs.

nlobj = nlmpcMultistage(p,nx,'MV',mvIndex,'MD',mdIndex) creates an
nlmpcMultistage object whose prediction model has measured disturbance inputs. Specify the
input indices for the manipulated variables, mvIndex, and measured disturbances, mdIndex.

nlobj = nlmpcMultistage(p,nx,'MV',mvIndex,'UD',udIndex) creates an
nlmpcMultistage object whose prediction model has unmeasured disturbance inputs. Specify the
input indices for the manipulated variables, mvIndex, and unmeasured disturbances, udIndex.

nlobj = nlmpcMultistage(p,nx,'MV',mvIndex,'MD',mdIndex,'UD',udIndex) creates an
nlmpcMultistage object whose prediction model has both measured and unmeasured disturbance
inputs. Specify the input indices for the manipulated variables, measured disturbances, and
unmeasured disturbances.

Input Arguments

p — Prediction horizon
positive integer

Prediction horizon number of steps, specified as a positive integer. This syntax sets the read-only
property PredictionHorizon equal to the input argument p. Since this property is read-only, you

 nlmpcMultistage

3-75

cannot change it after creating the controller object. Note that p also determines the number of
stages (p+1).

nx — Number of prediction model states
positive integer

Number of prediction model states, specified as a positive integer. This value is stored in the
Dimensions.NumberOfStates controller read-only property. You cannot change the number of
states after creating the controller object.

nu — Number of prediction model inputs
positive integer

Number of prediction model inputs, which are all set to be manipulated variables, specified as a
positive integer. This value is stored in the Dimensions.NumberOfInputs controller read-only
property. You cannot change the number of manipulated variables after creating the controller object.

mvIndex — Manipulated variable indices
vector of positive integers

Manipulated variable indices, specified as a vector of positive integers. You cannot change these
indices after creating the controller object. This value is stored in the Dimensions.MVIndex
controller property.

The combined set of indices from mvIndex, mdIndex, and udIndex must contain all integers from 1
through Nu, where Nu is the number of prediction model inputs.

mdIndex — Measured disturbance indices
vector of positive integers

Measured disturbance indices, specified as a vector of positive integers. You cannot change these
indices after creating the controller object. This value is stored in the Dimensions.MDIndex
controller property.

The combined set of indices from mvIndex, mdIndex, and udIndex must contain all integers from 1
through Nu, where Nu is the number of prediction model inputs.

udIndex — Unmeasured disturbance indices
vector of positive integers

Unmeasured disturbance indices, specified as a vector of positive integers. You cannot change these
indices after creating the controller object. This value is stored in the Dimensions.UDIndex
controller property.

The combined set of indices from mvIndex, mdIndex, and udIndex must contain all integers from 1
through Nu, where Nu is the number of prediction model inputs.

Properties
Ts — Prediction model sample time
1 (default) | positive finite scalar

Prediction model sample time, specified as a positive finite scalar. The controller uses a discrete-time
model with a sample time of Ts for prediction. If you specify a continuous-time prediction model

3 Objects

3-76

(Model.IsContinuousTime is true), then the controller discretizes the model using the built-in
implicit trapezoidal rule with a sample time of Ts.

PredictionHorizon — Prediction horizon
positive integer

This property is read-only.

Prediction horizon steps, specified as a read-only positive integer. The product of
PredictionHorizon and Ts is the prediction time, that is, how far the controller looks into the
future.

UseMVRate — MV rate used in MPC problem
false (default) | true

Flag indicating whether the rate of change of the manipulated variables is used as a decision variable
in the problem formulation, specified as a logical value. Set UseMVRate to true if:

• You need to specify hard upper or lower bounds on the MV rate.
• The MV rate appears as a term in a cost or constraint function at any stage.
• You need to implement block moves (which you can do so by setting the RateMin and RateMax

bounds at the corresponding stages to zero).

By default, the value is false, which means that the rate of change of the manipulated variables
does not explicitly appear in the formulation of your MPC problem.

Dimensions — Prediction model dimensional information
structure

This property is read-only.

Prediction model dimensional information, specified when you create the controller and stored as a
structure with the following fields.

NumberOfStates — Number of states
positive integer

This property is read-only.

Number of states in the prediction model, specified as a positive integer. This value corresponds to
nx.

NumberOfInputs — Number of inputs
positive integer

This property is read-only.

Number of inputs in the prediction model, specified as a positive integer. This value corresponds to
either nu or the sum of the lengths of mvIndex, mdIndex, and udIndex.

MVIndex — Manipulated variable indices
vector of positive integers

This property is read-only.

 nlmpcMultistage

3-77

Manipulated variable indices for the prediction model, specified as a vector of positive integers. This
value corresponds to mvIndex.

MDIndex — Measured disturbance indices
vector of positive integers

This property is read-only.

Measured disturbance indices for the prediction model, specified as a vector of positive integers. This
value corresponds to mdIndex.

UDIndex — Unmeasured disturbance indices
vector of positive integers

This property is read-only.

Unmeasured disturbance indices for the prediction model, specified as a vector of positive integers.
This value corresponds to udIndex.

Model — Prediction model
structure

Prediction model, specified as a structure with the following fields.

StateFcn — State function
string | character vector | function handle

State function, specified as a string, character vector, or function handle. For a continuous-time
prediction model, StateFcn is the state derivative function. For a discrete-time prediction model,
StateFcn is the state update function.

If your state function is continuous-time, the controller automatically discretizes the model using the
implicit trapezoidal rule. This method can handle moderately stiff models, and its prediction accuracy
depends on the controller sample time Ts; that is, a large sample time leads to inaccurate prediction.

If the default discretization method does not provide satisfactory prediction for your application, you
can specify your own discrete-time prediction model that uses a different method, such as the
multistep forward Euler rule.

You can specify your state function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.StateFcn = "myStateFunction";

• Handle to a local function, or a function defined in the current working folder or on the MATLAB
path

Model.StateFcn = @myStateFunction;

The state function must have the following input and outputs.

if Model.ParameterLength>0
 out = myStateFunction(x,u,pm);
else

3 Objects

3-78

 out = myStateFunction(x,u);
end

Here, x is the state vector, u is the input vector, and pm is the model parameter vector. If
IsContinuousTime is true then out must be the value of the state derivative with respect to time,
otherwise it must be the value of the state in the following time interval.

For more information, see “Specify Prediction Model for Nonlinear MPC”.

StateJacFcn — State Jacobian function
[] (default) | string | character vector | function handle

State Jacobian function, specified as a string, character vector, or function handle. As a best practice,
use Jacobians whenever they are available, since they improve optimization efficiency. If you do not
specify a Jacobian for a given function, the nonlinear programming solver must numerically compute
the Jacobian.

You can specify your output function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Model.StateJacFcn = "myStateJacFunction";

• Handle to a local function, or a function defined in the current working folder or on the MATLAB
path

Model.StateJacFcn = @myStateJacFunction;

The state Jacobian function must have the following input and outputs.

if Model.ParameterLength>0
 [A,Bmv] = myStateJacFunction(x,u,pm);
else
 [A,Bmv] = myStateJacFunction(x,u);
end

Here, x is the state vector, u is the input vector, and pm is the model parameter vector. A is the
Jacobian of the state function (either continuous or discrete time) with respect to the state vector and
B is the Jacobian of the state function with respect to the manipulated variable vector. A is a square
matrix with Nx rows and columns, where Nx is the number of states
(Dimensions.NumberOfStates). Bmv must have Nx rows and Nmv columns, where Nmv is the
number of manipulated variables.

For more information, see “Specify Prediction Model for Nonlinear MPC”.

IsContinuousTime — Flag indicating prediction model time domain
true (default) | false

Flag indicating the prediction model time domain, specified as one of the following:

• true — Continuous-time prediction model. In this case, the controller automatically discretizes
the model during prediction using Ts.

• false — Discrete-time prediction model. In this case, Ts is the sample time of the model.

 nlmpcMultistage

3-79

Note If IsContinuousTime is true, StateFcn must return the derivative of the state with respect
to time, at the current time. Otherwise StateFcn must return the state at the next control interval.

ParameterLength — Length of the parameter vector
0 (default) | nonnegative integer

Length of the parameter vector used by the prediction model, specified as a nonnegative integer. If
the model state function or its Jacobian require external parameters, set this value to the number of
scalar parameters needed. At runtime you must then provide a numeric parameter vector, across the
whole prediction horizon, to the controller.

TerminalState — Terminal state
[] (default) | vector

Terminal state, specified as a column vector with as many elements as the number of states. The
terminal state is the desired state at the last prediction step. If any states in the vector do not have
terminal values, specify inf at the corresponding locations to leave their terminal values free.

The default value of this property is [], meaning that no terminal state constraint is enforced.

States — State information and bounds
structure array

State information and hard bounds, specified as a structure array with Nx elements, where Nx is the
number of states. Each structure element has the following fields.

Min — State hard lower bound
-Inf (default) | scalar | vector

State hard lower bound, specified as a scalar or vector. By default, this lower bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

State bounds are always hard constraints. Use stage inequality constraints to implement soft bounds
(see Stages).

Max — State hard upper bound
Inf (default) | scalar | vector

State hard upper bound, specified as a scalar or vector. By default, this upper bound is Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k+1 to time k+p, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

State bounds are always hard constraints. Use stage inequality constraints to implement soft bounds
(see Stages).

3 Objects

3-80

Name — State name
string | character vector

State name, specified as a string or character vector. The default state name is "x#", where # is its
state index.

Units — State units
"" (default) | string | character vector

State units, specified as a string or character vector.

ManipulatedVariables — Manipulated variable information and hard bounds
structure array

Manipulated Variable (MV) information and hard bounds, specified as a structure array with Nmv
elements, where Nmv is the number of manipulated variables. To access this property, you can use the
alias MV instead of ManipulatedVariables.

Each structure element has the following fields.

Min — MV hard lower bound
-Inf (default) | scalar | vector

MV hard lower bound, specified as a scalar or vector. By default, this lower bound is -Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

MV bounds are always hard constraints. Use stage inequality constraints to implement soft bounds
(see Stages).

Max — MV hard upper bound
Inf (default) | scalar | vector

MV hard upper bound, specified as a scalar or vector. By default, this upper bound is +Inf.

To use the same bound across the prediction horizon, specify a scalar value.

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

MV bounds are always hard constraints. Use stage inequality constraints to implement soft bounds
(see Stages).

RateMin — MV rate of change hard lower bound
-Inf (default) | nonpositive scalar | vector

MV rate of change hard lower bound, specified as a nonpositive scalar or vector. The MV rate of
change at stage i is defined as MV(i) - MV(i–1). By default, this lower bound is -Inf. If UseMVRate is
false this value is ignored.

To use the same bound across the prediction horizon, specify a scalar value.

 nlmpcMultistage

3-81

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

MV rate bounds are always hard constraints. Use stage inequality constraints to implement soft
bounds (see Stages).

RateMax — MV rate of change hard upper bound
Inf (default) | nonnegative scalar | vector

MV rate of change hard upper bound, specified as a nonnegative scalar or vector. The MV rate of
change at stage i is defined as MV(i) - MV(i–1). By default, this upper bound is +Inf.

To use the same bound across the prediction horizon, specify a scalar value. If UseMVRate is false
this value is ignored.

To vary the bound over the prediction horizon from time k to time k+p–1, specify a vector of up to p
values. Here, k is the current time and p is the prediction horizon. If you specify fewer than p values,
the final bound is used for the remaining steps of the prediction horizon.

MV Rate bounds are always hard constraints. Use stage inequality constraint to implement soft
bounds (see Stages).

Name — MV name
string | character vector

MV name, specified as a string or character vector. The default MV name is "u#", where # is its input
index.

Units — MV units
"" (default) | string | character vector

MV units, specified as a string or character vector.

MeasuredDisturbances — Measured disturbance information
structure array

Measured disturbance (MD) information, specified as a structure array with Nmd elements, where Nmd
is the number of measured disturbances. If your model does not have measured disturbances, then
MeasuredDisturbances is []. To access this property, you can use the alias MD instead of
MeasuredDisturbances.

Each structure element has the following fields.

Name — MD name
string | character vector

MD name, specified as a string or character vector. The default MD name is "u#", where # is its input
index.

Units — MD units
"" (default) | string | character vector

MD units, specified as a string or character vector.

3 Objects

3-82

Stages — Stage cost and constraint functions
structure

Stage cost and constraint functions, specified as an array of p+1 structures (where p is the prediction
horizon), each one with the following fields.

CostFcn — Cost function at stage i
string | character vector | function handle

Cost function at stage i (where i ranges from 1 to p+1), specified as a string, character vector, or
function handle. The overall cost function of the nonlinear MPC problem is the sum of the cost
functions at each stage.

You can specify your stage cost function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Stages(i).CostFcn = 'myCostFunction';
• Handle to a local function or a function defined in the current working folder or on the MATLAB

path

Stages(i).CostFcn = @myCostFunction;

In the most general case in which UseMVRate is true, and both Stages(i).ParameterLength
and Stages(i).SlackVariableLength are greater than 0, the cost function must have the
following inputs and outputs.

Ji = myCostFunction(i,x,u,dmv,e,pv);

Here:

• Ji is a double scalar expressing the cost for stage i.
• i is the stage number from 1 (current control interval) to p+1 (end of the prediction horizon).
• x is the state vector.
• u is the input vector.
• dmv is the manipulated variable rate vector (change with respect to previous control interval).
• e is the stage slack variable vector.
• pv is the stage parameter vector.

If UseMVRate is false, omit the dmv input.

If Stages(i).SlackVariableLength is 0, omit the e input.

If Stages(i).ParameterLength is 0, omit the pv input.

In summary:

if UseMVRate is true
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 Ji = myCostFunction(i,x,u,dmv,e,pv);
 else
 Ji = myCostFunction(i,x,u,dmv,e);

 nlmpcMultistage

3-83

 end
 else
 if Stages(i).ParameterLength>0
 Ji = myCostFunction(i,x,u,dmv,pv);
 else
 Ji = myCostFunction(i,x,u,dmv);
 end
 end
else
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 Ji = myCostFunction(i,x,u,e,pv);
 else
 Ji = myCostFunction(i,x,u,e);
 end
 else
 if Stages(i).ParameterLength>0
 Ji = myCostFunction(i,x,u,pv);
 else
 Ji = myCostFunction(i,x,u);
 end
 end
end

Note that you can also write separate functions for separate stages as long as their name is specified
in Stages(i).CostFcn and all functions have the required number of inputs and outputs, in the
required order.

For more information, see “Specify Prediction Model for Nonlinear MPC”.

CostJacFcn — Gradient of the cost function at stage i
string | character vector | function handle

Gradient of the cost function at stage i (where i ranges from 1 to p+1), specified as a string,
character vector, or function handle. It is best practice to use Jacobians (in this case, gradients)
whenever they are available, since they improve optimization efficiency. If you do not specify a
Jacobian for a given function, the nonlinear programming solver must numerically compute the
Jacobian.

You can specify your stage cost gradient function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Stages(i).CostJacFcn = 'myCostJacFunction';
• Handle to a local function, or a function defined in the current working folder or on the MATLAB

path

Stages(i).CostJacFcn = @myCostJacFunction;

In the most general case in which UseMVRate is true, and both Stages(i).ParameterLength
and Stages(i).SlackVariableLength are greater than 0, the stage cost gradient function must
have the following inputs and outputs.

[Gx,Gmv,Gdmv,Ge] = myCostJacFunction(i,x,u,dmv,e,pv);

where

3 Objects

3-84

• Gx is the gradient of cost function for stage i with respect to the state vector x. It must be a
column vector with Nx elements, where Nx is the number of states.

• Gmv is the gradient of the cost function for stage i with respect to the manipulated variable vector
mv. It must be a column vector with Nmv elements, where Nmv is the number of manipulated
variables.

• Gdmv is the gradient of the cost function for stage i with respect to the manipulated variable
vector change dmv. It must be a column vector with Nmv elements, where Nmv is the number of
manipulated variables.

• Ge is the gradient of the cost function for stage i with respect to the stage slack variable vector e.
It must be a column vector with Ne elements, where Ne is the number of stage slack variables.

• i is the stage number from 1 (current control interval) to p+1 (end of the prediction horizon).
• x is the state vector.
• u is the input vector.
• dmv is the manipulated variable rate vector (change with respect to the previous control interval).
• e is the stage slack variable vector.
• pv is the stage parameter vector.

If UseMVRate is false, omit the dmv input and the Gdmv output.

If Stages(i).SlackVariableLength is 0, omit the e input and the Ge output.

If Stages(i).ParameterLength is 0, omit the pv input.

In summary:

if UseMVRate is true
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 [Gx,Gmv,Gdmv,Ge] = myCostJacFunction(i,x,u,dmv,e,pv);
 else
 [Gx,Gmv,Gdmv,Ge] = myCostJacFunction(i,x,u,dmv,e);
 end
 else
 if Stages(i).ParameterLength>0
 [Gx,Gmv,Gdmv] = myCostJacFunction(i,x,u,dmv,pv);
 else
 [Gx,Gmv,Gdmv] = myCostJacFunction(i,x,u,dmv);
 end
 end
else
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 [Gx,Gmv,Ge] = myCostJacFunction(i,x,u,e,pv);
 else
 [Gx,Gmv,Ge] = myCostJacFunction(i,x,u,e);
 end
 else
 if Stages(i).ParameterLength>0
 [Gx,Gmv] = myCostJacFunction(i,x,u,pv);
 else
 [Gx,Gmv] = myCostJacFunction(i,x,u);
 end

 nlmpcMultistage

3-85

 end
end

Note that you can also write separate functions for separate stages as long as their name is specified
in Stages(i).CostJacFcn and all functions have the required number of inputs and outputs, in the
required order.

For more information, see “Specify Prediction Model for Nonlinear MPC”.

EqConFcn — Equality constraint function at stage i
string | character vector | function handle

Equality constraint function at stage i (where i ranges from 1 to p), specified as a string, character
vector, or function handle. Note that specifying an equality constraint for the last stage (p+1) is not
supported. Use the TerminalState field of the Model property instead.

You can specify your stage equality constraint function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Stages(i).EqConFcn = 'myEqConFunction';
• Handle to a local function, or a function defined in the current working folder or on the MATLAB

path

Stages(i).EqConFcn = @myEqConFunction;

In the most general case in which UseMVRate is true, and Stages(i).ParameterLength is
greater than 0, the equality constraint function must have the following inputs and outputs.

Ceq = myEqConFunction(i,x,u,dmv,pv);

where

• Ceq is a vector expressing the equality constraints for stage i. At any feasible solution of the MPC
problem the returned Ceq must be equal to 0. Note that the number of elements in Ceq must be
less than the number of manipulated variables otherwise the problem is overspecified and
generally infeasible.

• i is the stage number from 1 (current control interval) to p+1 (end of the prediction horizon).
• x is the state vector.
• u is the input vector.
• dmv is the manipulated variable rate vector (change with respect to previous control interval).
• pv is the stage parameter vector.

If UseMVRate is false, omit the dmv input.

If Stages(i).ParameterLength is 0, omit the pv input.

In summary:

if UseMVRate is true
 if Stages(i).ParameterLength>0
 Ceq = myEqConFunction(i,x,u,dmv,pv);
 else

3 Objects

3-86

 Ceq = myEqConFunction(i,x,u,dmv);
 end
else
 if Stages(i).ParameterLength>0
 Ceq = myEqConFunction(i,x,u,pv);
 else
 Ceq = myEqConFunction(i,x,u);
 end
end

Note that you can also write separate functions for separate stages as long as their name is specified
in Stages(i).EqConFcn and all functions have the required number of inputs and outputs, in the
required order.

For more information, see “Specify Prediction Model for Nonlinear MPC”.

EqConJacFcn — Jacobian of equality constraint function at stage i
string | character vector | function handle

Jacobian of the equality constraint function at stage i (where i ranges from 1 to p), specified as a
string, character vector, or function handle. Note that specifying an equality constraint (and hence its
Jacobian function) for the last stage (p+1) is not supported.

It is best practice to use Jacobians whenever they are available, since they improve optimization
efficiency. If you do not specify a Jacobian for a given function, the nonlinear programming solver
must numerically compute the Jacobian.

You can specify your stage equality constraint Jacobian function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Stages(i).EqConJacFcn = 'myEqConJacFunction';

• Handle to a local function, or a function defined in the current working folder or on the MATLAB
path

Stages(i).EqConJacFcn = @myEqConJacFunction;

In the most general case in which UseMVRate is true, and Stages(i).ParameterLength is
greater than 0, the equality constraint Jacobian function must have the following inputs and outputs.

[Ceqx,Ceqmv,Ceqdmv] = myEqConJacFunction(i,x,u,dmv,pv);

where

• Ceqx is the Jacobian of the equality constraint function for stage i, with respect to the state
vector x. It must be a matrix with NCeq rows and Nx columns, where NCeq is the number of stage
equality constraints and Nx the number of states. Note that NCeq has to be less than NCmv
otherwise the problem is overdetermined and generally infeasible.

• Ceqmv is the Jacobian of the equality constraint function for stage i, with respect to the
manipulated variable vector mv. It must be a matrix with NCeq rows and Nmv columns, where NCeq
is the number of stage equality constraints and Nmv the number of manipulated variables.

• Ceqdmv is the Jacobian of the equality constraint function for stage i, with respect to the
manipulated variable vector change (rate) dmv. It must be a matrix with NCeq rows and Nmv

 nlmpcMultistage

3-87

columns, where NCeq is the number of stage equality constraints and Nmv the number of
manipulated variables.

• i is the stage number from 1 (current control interval) to p+1 (end of the prediction horizon).
• x is the state vector.
• u is the input vector.
• dmv is the manipulated variable rate vector (change with respect to previous control interval).
• pv is the stage parameter vector.

If UseMVRate is false, omit the dmv input and the Ceqdmv output.

If Stages(i).ParameterLength is 0, omit the pv input.

In summary

if UseMVRate is true
 if Stages(i).ParameterLength>0
 [Ceqx,Ceqmv,Ceqdmv] = myEqConJacFunction(i,x,u,dmv,pv);
 else
 [Ceqx,Ceqmv,Ceqdmv] = myEqConJacFunction(i,x,u,dmv);
 end
else
 if Stages(i).ParameterLength>0
 [Ceqx,Ceqmv] = myEqConJacFunction(i,x,u,pv);
 else
 [Ceqx,Ceqmv] = myEqConJacFunction(i,x,u);
 end
end

Note that you can also write separate functions for separate stages as long as their name is specified
in Stages(i).EqConJacFcn and all functions have the required number of inputs and outputs, in
the required order.

For more information, see “Specify Prediction Model for Nonlinear MPC”.

IneqConFcn — Inequality constraint function at stage i
string | character vector | function handle

Inequality constraint function at stage i (where i ranges from 1 to p+1), specified as a string,
character vector, or function handle.

You can specify your stage inequality constraint function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Stages(i).IneqConFcn = 'myIneqConFunction';
• Handle to a local function, or a function defined in the current working folder or on the MATLAB

path

Stages(i).IneqConFcn = @myIneqConFunction;

In the most general case in which UseMVRate is true, and both Stages(i).ParameterLength
and Stages(i).SlackVariableLength are greater than 0, the inequality constraint function must
have the following inputs and outputs.

3 Objects

3-88

C = myIneqConFunction(i,x,u,dmv,e,pv);

Here:

• C is a vector expressing the inequality constraints for stage i. For any feasible solution of the MPC
problem, C must be non-positive.

• i is the stage number from 1 (current control interval) to p+1 (end of the prediction horizon).
• x is the state vector.
• u is the input vector.
• dmv is the manipulated variable rate vector (change with respect to previous control interval).
• e is the stage slack variable vector.
• pv is the stage parameter vector.

If UseMVRate is false, omit the dmv input.

If Stages(i).SlackVariableLength is 0, omit the e input.

If Stages(i).ParameterLength is 0, omit the pv input.

In summary:

if UseMVRate is true
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 C = myIneqConFunction(i,x,u,dmv,e,pv);
 else
 C = myIneqConFunction(i,x,u,dmv,e);
 end
 else
 if Stages(i).ParameterLength>0
 C = myIneqConFunction(i,x,u,dmv,pv);
 else
 C = myIneqConFunction(i,x,u,dmv);
 end
 end
else
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 C = myIneqConFunction(i,x,u,e,pv);
 else
 C = myIneqConFunction(i,x,u,e);
 end
 else
 if Stages(i).ParameterLength>0
 C = myIneqConFunction(i,x,u,pv);
 else
 C = myIneqConFunction(i,x,u);
 end
 end
end

Note that you can also write separate functions for separate stages as long as their name is specified
in Stages(i).IneqConFcn and that all functions have the required number of inputs and outputs,
in the required order.

 nlmpcMultistage

3-89

For more information, see “Specify Prediction Model for Nonlinear MPC”.

IneqConJacFcn — Jacobian of the inequality constraint function at stage i
string | character vector | function handle

Jacobian of the inequality constraint function at stage i (where i ranges from 1 to p+1), specified as
a string, character vector, or function handle. It is best practice to use Jacobians whenever they are
available, since they improve optimization efficiency. If you do not specify a Jacobian for a given
function, the nonlinear programming solver must numerically compute the Jacobian.

You can specify your stage constraint Jacobian function in one of the following ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Stages(i).IneqConJacFcn = 'myIneqConJacFunction';

• Handle to a local function, or a function defined in the current working folder or on the MATLAB
path

Stages(i).IneqConJacFcn = @myIneqConJacFunction;

In the most general case in which UseMVRate is true, and both Stages(i).ParameterLength
and Stages(i).SlackVariableLength are greater than 0, the stage cost Jacobian function must
have the following inputs and outputs.

[Cx,Cmv,Cdmv,Ce] = myEqConJacFunction(i,x,u,dmv,e,pv);

Here:

• Cx is the Jacobian of the inequality constraint function for stage i, with respect to the state vector
x. It must be a matrix with NC rows and Nx columns, where NC is the number of stage inequality
constraints and Nx the number of states.

• Cmv is the Jacobian of the inequality constraint function for stage i, with respect to the
manipulated variable vector mv. It must be a matrix with NC rows and Nmv columns, where NC is
the number of stage inequality constraints and Nmv the number of manipulated variables.

• Cdmv is the Jacobian of the inequality constraint function for stage i, with respect to the
manipulated variable change (rate) dmv. It must be a matrix with NC rows and Nmv columns, where
NC is the number of stage inequality constraints and Nmv the number of manipulated variables.

• Ce is the Jacobian of the inequality constraint function for stage i, with respect to the stage slack
variable vector e. It must be a matrix with NC rows and Ne columns, where NC is the number of
stage inequality constraints and Ne the number of stage slack variables.

• i is the stage number from 1 (current control interval) to p+1 (end of the prediction horizon).
• x is the state vector.
• u is the input vector.
• dmv is the manipulated variable rate vector (change with respect to previous control interval).
• e is the stage slack variable vector.
• pv is the stage parameter vector.

If UseMVRate is false, omit the dmv input and the Cdmv output.

If Stages(i).SlackVariableLength is 0, omit the e input and the Ce output.

3 Objects

3-90

If Stages(i).ParameterLength is 0, omit the pv input.

In summary:

if UseMVRate is true
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 [Cx,Cmv,Cdmv,Ce] = myIneqConJacFunction(i,x,u,dmv,e,pv);
 else
 [Cx,Cmv,Cdmv,Ce] = myIneqConJacFunction(i,x,u,dmv,e);
 end
 else
 if Stages(i).ParameterLength>0
 [Cx,Cmv,Cdmv] = myIneqConJacFunction(i,x,u,dmv,pv);
 else
 [Cx,Cmv,Cdmv] = myIneqConJacFunction(i,x,u,dmv);
 end
 end
else
 if Stages(i).SlackVariableLength>0
 if Stages(i).ParameterLength>0
 [Cx,Cmv,Ce] = myIneqConJacFunction(i,x,u,e,pv);
 else
 [Cx,Cmv,Ce] = myIneqConJacFunction(i,x,u,e);
 end
 else
 if Stages(i).ParameterLength>0
 [Cx,Cmv] = myIneqConJacFunction(i,x,u,pv);
 else
 [Cx,Cmv] = myIneqConJacFunction(i,x,u);
 end
 end
end

Note that you can also write separate functions for separate stages as long as their name is specified
in Stages(i).IneqConFcn and that all functions have the required number of inputs and outputs,
in the required order.

For more information, see “Specify Prediction Model for Nonlinear MPC”.

SlackVariableLength — Length of the stage slack variable vector
0 (default) | nonnegative integer

Length of the slack variable vector used by the cost and constraint functions at stage i, specified as a
nonnegative integer. You can use slack variables to implement soft constraints for a given stage,
using the corresponding IneqConFcn and CostFcn functions.

ParameterLength — Length of the parameter vector
0 (default) | nonnegative integer

Length of the parameter vector used by the cost and constraint functions at stage i, specified as a
nonnegative integer. If any stage uses parameters, this value must be positive, and as a consequence
all the stage functions must have a parameter vector as their last input argument.

Optimization — Custom optimization functions and solver
structure

 nlmpcMultistage

3-91

Custom optimization functions and solver, specified as a structure with the following fields.

CustomSolverFcn — Custom nonlinear programming solver
[] (default) | string | character vector | function handle

Custom nonlinear programming solver function, specified as a string, character vector, or function
handle. If you do not have Optimization Toolbox software, you must specify your own custom
nonlinear programming solver. You can specify your custom solver function in one of the following
ways:

• Name of a function in the current working folder or on the MATLAB path, specified as a string or
character vector

Optimization.CustomSolverFcn = "myNLPSolver";

• Handle to a function in the current working folder or on the MATLAB path

Optimization.CustomSolverFcn = @myNLPSolver;

For more information, see “Configure Optimization Solver for Nonlinear MPC”.

SolverOptions — Solver options
options object for fmincon | []

Solver options, specified as an options object for fmincon or [].

If you have Optimization Toolbox software, SolverOptions contains an options object for the
fmincon solver.

If you do not have Optimization Toolbox, SolverOptions is [].

For more information, see “Configure Optimization Solver for Nonlinear MPC”.

UseSuboptimalSolution — Flag indicating whether a suboptimal solution is acceptable
false (default) | true

Flag indicating whether a suboptimal solution is acceptable, specified as a logical value. When the
nonlinear programming solver reaches the maximum number of iterations without finding a solution
(the exit flag is 0), the controller:

• Freezes the MV values if UseSuboptimalSolution is false
• Applies the suboptimal solution found by the solver after the final iteration if

UseSuboptimalSolution is true

To specify the maximum number of iterations, use Optimization.SolverOptions.MaxIter.

PerturbationRatio — Coefficient used to calculate perturbation sizes
1e-6 (default) | positive scalar

Coefficient used to calculate the perturbation sizes applied to the decision variables when using
forward finite differences to estimate derivatives. The perturbation size vector for the decision
variable vector z is PerturbationRatio*max(abs(z),1). The default value for this parameter is
1e–6. If your prediction model is stiff and your cost/constraint terms are sensitive, use a smaller
value such as 1e–8.

3 Objects

3-92

Object Functions
nlmpcmove Compute optimal control action for nonlinear MPC controller
validateFcns Examine prediction model and custom functions of nlmpc or nlmpcMultistage

objects for potential problems
getSimulationData Create data structure to simulate multistage MPC controller with nlmpcmove

Examples

Create Multistage Nonlinear MPC object

Create a multistage nonlinear MPC object with a prediction horizon of 5 steps, 2 states, and 1
manipulated variable.

nlobj = nlmpcMultistage(5,2,1);

Create Multistage Nonlinear MPC object with Measured Disturbance Inputs

Create a multistage nonlinear MPC object with a prediction horizon of 5 steps, 2 states, and 2 inputs,
where the first input is a measured disturbance and the second is a manipulated variable.

nlobj = nlmpcMultistage(5,2,'MV',2,'MD',1);

Create Multistage Nonlinear MPC object with Unmeasured Disturbance Inputs

Create a multistage nonlinear MPC object with a prediction horizon of 5 steps, 2 states, and 2 inputs,
where the first input is a manipulated variable and the second is an unmeasured disturbance.

nlobj = nlmpcMultistage(5,2,'MV',1,'UD',2);

Create Multistage Nonlinear MPC Object with Measured and Unmeasured Disturbance
Inputs

Create a multistage nonlinear MPC object with a prediction horizon of 6 steps, 3 states, and 4 inputs,
where the first two inputs are measured disturbances, the third is the manipulated variable, and the
fourth is an unmeasured disturbance.

nlobj = nlmpcMultistage(6, 3, 'MV',3,'MD',[1 2],'UD',4);

Set a sampling time of 2 seconds and display the nlobj object

nlobj.Ts = 2

nlobj =

 nlmpcMultistage with properties:

 Ts: 2
 PredictionHorizon: 6
 UseMVRate: 0

 nlmpcMultistage

3-93

 Dimensions: [1×1 struct]
 Model: [1×1 struct]
 States: [1×3 struct]
 ManipulatedVariables: [1×1 struct]
 MeasuredDisturbances: [1×2 struct]
 Stages: [1×7 struct]
 Optimization: [1×1 struct]

See Also
Blocks
Multistage Nonlinear MPC Controller

Topics
“Land a Rocket Using Multistage Nonlinear MPC”
“Truck and Trailer Automatic Parking Using Multistage Nonlinear MPC”
“Nonlinear MPC”

Introduced in R2021a

3 Objects

3-94

nlmpcmoveopt
Option set for nlmpcmove function

Description
To specify options for the nlmpcmove function, use an nlmpcmoveopt option set.

Using this option set, you can specify run-time values for a subset of controller properties, such as
tuning weights and constraints. If you do not specify a value for one of the nlmpcmoveopt
properties, the corresponding value defined in the nlmpc controller object is used instead.

Creation
Syntax
options = nlmpcmoveopt

Description

options = nlmpcmoveopt creates a default set of options for the nlmpcmove function. To modify
the property values, use dot notation.

Properties
OutputWeights — Output variable tuning weights
[] (default) | row vector | matrix

Output variable tuning weights that replace the Weights.OutputVariables property of the
controller at run time, specified as a row vector or matrix of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length Ny, where Ny is
the number of output variables.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, specify an array
with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the output variable tuning weights for one prediction horizon step. If you specify fewer
than p rows, the weights in the final row are used for the remaining steps of the prediction horizon.

MVWeights — Manipulated variable tuning weights
[] (default) | row vector | matrix

Manipulated variable tuning weights that replace the Weights.ManipulatedVariables property
of the controller at run time, specified as a row vector or matrix of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each

 nlmpcmoveopt

3-95

row contains the manipulated variable tuning weights for one prediction horizon step. If you specify
fewer than p rows, the weights in the final row are used for the remaining steps of the prediction
horizon.

MVRateWeights — Manipulated variable rate tuning weights
[] (default) | row vector | matrix

Manipulated variable rate tuning weights that replace the Weights.ManipulatedVariablesRate
property of the controller at run time, specified as a row vector or matrix of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length Nmv, where Nmv
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with Nmv columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable rate tuning weights for one prediction horizon step. If you
specify fewer than p rows, the weights in the final row are used for the remaining steps of the
prediction horizon.

ECR Weight — Slack variable tuning weight
[] (default) | positive scalar

Slack variable tuning weight that replaces the Weights.ECR property of the controller at run time,
specified as a positive scalar.

OutputMin — Output variable lower bounds
[] (default) | row vector | matrix

Output variable lower bounds, specified as a row vector of length Ny or a matrix with Ny columns,
where Ny is the number of output variables. OutputMin(:,i) replaces the
OutputVariables(i).Min property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

OutputMax — Output variable upper bounds
[] (default) | row vector | matrix

Output variable upper bounds, specified as a row vector of length Ny or a matrix with Ny columns,
where Ny is the number of output variables. OutputMax(:,i) replaces the
OutputVariables(i).Max property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVMin — Manipulated variable lower bounds
[] (default) | row vector | matrix

3 Objects

3-96

Manipulated variable lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMin(:,i) replaces the
ManipulatedVariables(i).Min property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVMax — Manipulated variable upper bounds
[] (default) | row vector | matrix

Manipulated variable upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVMax(:,i) replaces the
ManipulatedVariables(i).Max property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMin — Manipulated variable rate lower bounds
[] (default) | row vector | matrix

Manipulated variable rate lower bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMin(:,i) replaces the
ManipulatedVariables(i).RateMin property of the controller at run time. MVRateMin bounds
must be nonpositive.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVRateMax — Manipulated variable rate upper bounds
[] (default) | row vector | matrix

Manipulated variable rate upper bounds, specified as a row vector of length Nmv or a matrix with Nmv
columns, where Nmv is the number of manipulated variables. MVRateMax(:,i) replaces the
ManipulatedVariables(i).RateMax property of the controller at run time. MVRateMax bounds
must be nonnegative.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

 nlmpcmoveopt

3-97

StateMin — State lower bounds
[] (default) | row vector | matrix

State lower bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMin(:,i) replaces the States(i).Min property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

StateMax — State upper bounds
[] (default) | row vector | matrix

State upper bounds, specified as a row vector of length Nx or a matrix with Nx columns, where Nx is
the number of states. StateMax(:,i) replaces the States(i).Max property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

MVTarget — Manipulated variable targets
[] (default) | row vector | matrix

Manipulated variable targets, specified as a row vector of length Nmv or a matrix with Nmv columns,
where Nmv is the number of manipulated variables.

To use the same manipulated variable targets across the prediction horizon, specify a row vector.

To vary the targets over the prediction horizon (previewing) from time k to time k+p-1, specify a
matrix with up to p rows. Here, k is the current time and p is the prediction horizon. Each row
contains the targets for one prediction horizon step. If you specify fewer than p rows, the final targets
are used for the remaining steps of the prediction horizon.

Parameters — Parameter values
{} (default) | cell vector

Parameter values used by the prediction model, custom cost function, and custom constraints,
specified as a cell vector with length equal to the Model.NumberOfParameters property of the
controller. If the controller has no parameters, then Parameters must be {}.

The controller, nlmpcobj, passes these parameters to the:

• Model functions in nlmpcobj.Model (StateFcn and OutputFcn)
• Cost function nlmpcobj.Optimization.CustomCostFcn
• Constraint functions in nlmpcobj.Optimization (CustomEqConFcn and CustomIneqConFcn)

3 Objects

3-98

• Jacobian functions in nlmpcobj.Jacobian

The order of the parameters must match the order defined for these functions.

X0 — Initial guesses for the optimal state solutions
[] (default) | vector | matrix

Initial guesses for the optimal state solutions, specified as a row vector of length Nx or a matrix with
Nx columns, where Nx is the number of states.

To use the same initial guesses across the prediction horizon, specify a row vector.

To vary the initial guesses over the prediction horizon from time k+1 to time k+p, specify a matrix
with up to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the
initial guesses for one prediction horizon step. If you specify fewer than p rows, the final guesses are
used for the remaining steps of the prediction horizon.

If X0 is [], the default initial guesses are the current states of the prediction model (x input
argument to nlmpcmove).

In general, during closed-loop simulation, you do not specify X0 yourself. Instead, when calling
nlmpcmove, return the opt output argument, which is an nlmpcmoveopt object. opt.X0 contains
the calculated optimal state trajectories as initial guesses. You can then pass opt in as the options
input argument to nlmpcmove for the next control interval. These steps are a best practice, even if
you do not specify any other run-time options.

MV0 — Initial guesses for the optimal manipulated variable solutions
[] (default) | vector | matrix

Initial guesses for the optimal manipulated variable solutions, specified as a row vector of length Nmv
or a matrix with Nmv columns, where Nmv is the number of manipulated variables.

To use the same initial guesses across the prediction horizon, specify a row vector.

To vary the initial guesses over the prediction horizon from time k to time k+p-1, specify a matrix
with up to p rows. Here, k is the current time and p is the prediction horizon. Each row contains the
initial guesses for one prediction horizon step. If you specify fewer than p rows, the final guesses are
used for the remaining steps of the prediction horizon.

If MV0 is [], the default initial guesses are the control signals used in the plant at the previous
control interval (lastmv input argument to nlmpcmove).

In general, during closed-loop simulation, you do not specify MV0 yourself. Instead, when calling
nlmpcmove, return the opt output argument, which is an nlmpcmoveopt object. opt.MV0 contains
the calculated optimal manipulated variable trajectories as initial guesses. You can then pass opt in
as the options input argument to nlmpcmove for the next control interval. These steps are a best
practice, even if you do not specify any other run-time options.

Slack0 — Initial guess for the slack variable at the solution
[] (default) | nonnegative scalar

Initial guess for the slack variable at the solution, specified as a nonnegative scalar. If Slack0 is [],
the default initial guess is 0.

In general, during closed-loop simulation, you do not specify Slack0 yourself. Instead, when calling
nlmpcmove, return the opt output argument, which is an nlmpcmoveopt object. opt.Slack

 nlmpcmoveopt

3-99

contains the calculated slack variable as an initial guess. You can then pass opt in as the options
input argument to nlmpcmove for the next control interval. These steps are a best practice, even if
you do not specify any other run-time options.

Object Functions
nlmpcmove Compute optimal control action for nonlinear MPC controller

Examples

Specify Run-Time Parameters for Nonlinear MPC

Create a default nlmpcmoveopt option set.

options = nlmpcmoveopt;

Specify the run-time values for the controller prediction model parameters. For this example, assume
that the controller has the following optional parameters, which are input arguments to all the
prediction model functions and custom functions of the controller.

• Sample time of the model, specified as a single numeric value. Specify a value of 0.25.
• Gain factors, specified as a two-element row vector. Specify a value of [0.7 0.35].

The order in which you specify the parameters must match the order specified in the custom function
argument lists. Also, the dimensions of the parameters must match the dimensions expected by the
custom functions.

options.Parameters = {0.25,[0.7 0.35]};

To use these parameters when computing optional control actions for a nonlinear MPC controller,
pass options to the nlmpcmove function.

See Also
nlmpc

Topics
“Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC”

Introduced in R2018b

3 Objects

3-100

Blocks

4

MPC Controller
Simulate model predictive controller
Library: Model Predictive Control Toolbox

Description
The MPC Controller block receives the current measured output signal (mo), reference signal (ref),
and optional measured disturbance signal (md). The block computes the optimal manipulated variable
(mv) by solving a quadratic programming problem using either the default KWIK solver or a custom
QP solver. For more information, see “QP Solvers”.

To use the block in simulation and code generation, you must specify an mpc object, which defines a
model predictive controller. This controller must have already been designed for the plant that it
controls.

Because the MPC Controller block uses MATLAB Function blocks, it requires compilation each time
you change the MPC object and block. Also, because MATLAB does not allow compiled code to reside
in any MATLAB product folder, you must use a non-MATLAB folder to work on your Simulink model
when you use MPC blocks.

Ports
Input

Required Inputs

mo — Measured outputs
vector

Measured outputs, specified as a vector signal. The block uses the measured plant outputs to improve
its state estimates. If your controller uses default state estimation, you must connect the measured
plant outputs to the mo input port. If your controller uses custom state estimation, you must connect
the estimated plant states to the x[k|k] input port.

Dependencies

To enable this port, clear the Use custom state estimation instead of using the built-in Kalman
filter parameter.

x[k|k] — Custom state estimate
vector

Custom state estimate, specified as a vector signal. The block uses the connected state estimates
instead of estimating the states using the built-in estimator. If your controller uses custom state

4 Blocks

4-2

estimation, you must connect the current state estimates to the x[k|k] input port. If your controller
uses default state estimation, you must connect the measured output to the mo input port.

Even though noise model states (if any) are not used in MPC optimization, the custom state vector
must contain all the states defined in the mpcstate object of the controller, including the plant,
disturbance, and noise model states.

Use custom state estimates when an alternative estimation technique is considered superior to the
built-in estimator or when the states are fully measurable.

Dependencies

To enable this port, select the Use custom state estimation instead of using the built-in
Kalman filter parameter.

ref — Model output reference values
row vector | matrix

Plant output reference values, specified as a row vector signal or matrix signal.

To use the same reference values across the prediction horizon, connect ref to a row vector signal
with NY elements, where Ny is the number of output variables. Each element specifies the reference
for an output variable.

To vary the references over the prediction horizon (previewing) from time k+1 to time k+p, connect
ref to a matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the
prediction horizon. Each row contains the references for one prediction horizon step. If you specify
fewer than p rows, the final references are used for the remaining steps of the prediction horizon.

Additional Inputs

md — input
row vector | matrix

If your controller prediction model has measured disturbances you must enable this port and connect
to it a row vector or matrix signal.

To use the same measured disturbance values across the prediction horizon, connect md to a row
vector signal with Nmd elements, where Nmd is the number of manipulated variables. Each element
specifies the value for a measured disturbance.

To vary the disturbances over the prediction horizon (previewing) from time k to time k+p, connect
md to a matrix signal with Nmd columns and up to p+1 rows. Here, k is the current time and p is the
prediction horizon. Each row contains the disturbances for one prediction horizon step. If you specify
fewer than p+1 rows, the final disturbances are used for the remaining steps of the prediction
horizon.

Dependencies

To enable this port, select the Measured disturbances parameter.

ext.mv — Control signals used in plant at previous control interval
vector

 MPC Controller

4-3

Control signals used in the plant at the previous control interval, specified as a vector signal of length
Nmv, where Nmv is the number of manipulated variables. Use this input port to improve state
estimation accuracy when:

• You know your controller is not always in control of the plant.
• The actual MV signals applied to the plant can potentially differ from the values generated by the

controller, such as in control signal saturation.

Controller state estimation assumes that the MVs are piecewise constant. Therefore, at time tk, the
ext.mv value must contain the effective MVs between times tk–1 and tk. For example, if the MVs are
actually varying over this interval, you might supply the time-averaged value evaluated at time tk.

Note

• Connect ext.mv to the MV signals actually applied to the plant in the previous control interval.
Typically, these MV signals are the values generated by the controller, though this is not always
the case. For example, if your controller is offline and running in tracking mode (that is, the
controller output is not driving the plant), then feeding the actual control signal to ext.mv can
help achieve bumpless transfer when the controller is switched back online.

• When the controller is driving the plant, insert a Memory block or Unit Delay block to feed back
the MV signal applied to the plant at the previous control interval. This also avoids a direct
feedthrough from the ext.mv inport to the mv outport, therefore preventing algebraic loops in the
Simulink model.

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.
Dependencies

To enable this port, select the External manipulated variable parameter.

switch — Enable or disable optimization
scalar

To turn off the controller optimization calculations, connect switch to a nonzero signal.

Disabling optimization calculations reduces computational effort when the controller output is not
needed, such as when the system is operating manually or another controller has taken over.
However, the controller continues to update its internal state estimates in the usual way. Therefore, it
is ready to resume optimization calculations whenever the switch signal returns to zero. While
controller optimization is off, the block passes the current ext.mv signal to the controller output. If
the ext.mv inport is not enabled, the controller output is held at the value it had when optimization
was disabled.

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.
Dependencies

To enable this port, select the Use external signal to enable or disable optimization parameter.

mv.target — Manipulated variable targets
vector

4 Blocks

4-4

To specify manipulated variable targets, enable this input port, and connect a vector signal. To make
a given manipulated variable track its specified target value, you must also specify a nonzero tuning
weight for that manipulated variable.

The supplied mv.target values at run-time apply across the prediction horizon.

Dependencies

To enable this port, select the Targets for manipulated variables parameter.

Online Constraints

ymin — Minimum output variable constraints
vector | matrix

To specify run-time minimum output variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the OutputVariables.Min property of its
mpc controller object. If an output variable has no lower bound specified in the controller object, then
at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k+1 to time k+p, connect ymin to a
matrix signal with Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the
current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one output variable, and a vector signal with no more than p
entries is connected, then these entries are used across the prediction horizon.

The ith column of the ymin signal corresponds to the ith plant output, and replaces the
OutputVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar OutputVariables(i).Min in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)

ymin Dimension Replacement Behavior
Scalar ymin (single output, constant bound) ymin replaces the constant bound defined in

OutputVariables(i).Min
Column vector ymin (single output, time-varying bound) ymin replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.
Row vector ymin (multiple outputs, constant bounds) The ith element of ymin replaces the constant bound defined in

OutputVariables(i).Min
Matrix ymin (multiple outputs, time-varying bounds) The ith column of ymin replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.

 MPC Controller

4-5

Vector OutputVariables(i).Min in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)

ymin Dimension Replacement Behavior
Scalar ymin (single output, constant bound) ymin replaces the first finite entry in OutputVariables.Min

and the remaining entries in OutputVariables.Min shift up
or down with the same amount of displacement to retain the
profile defined by the original OutputVariables.Min vector.

Column vector ymin (single output, time-varying bound) ymin replaces the time-varying bound defined in
OutputVariables(i).Min, and the original bound profile is
discarded.

Row vector ymin (multiple outputs, constant bounds) The ith element of ymin replaces the first finite entry
in OutputVariables(i).Min and the remaining entries in
OutputVariables(i).Min shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Min vector.

Matrix ymin (multiple outputs, time-varying bounds). The ith column of ymin replaces the time-varying bound
defined in OutputVariables(i).Min, and the original bound
profile is discarded.

Dependencies

To enable this port, select the Lower OV limits parameter.

ymax — Maximum output variable constraints
vector | matrix

To specify run-time maximum output variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the OutputVariables.Max property of its
mpc controller object. If an output variable has no upper bound specified in the controller object, then
at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k+1 to time k+p, connect ymax to a
matrix signal with Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the
current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one output variable, and a vector signal with no more than p
entries is connected, then these entries are used across the prediction horizon.

The ith column of the ymax signal corresponds to the ith plant output, and replaces the
OutputVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

4 Blocks

4-6

Scalar OutputVariables(i).Max in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)
ymax Dimension Replacement Behavior
Scalar ymax (single output, constant bound) ymax replaces the constant bound defined in

OutputVariables(i).Max
Column vector ymax (single output, time-varying bound) ymax replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.
Row vector ymax (multiple outputs, constant bounds) The ith element of ymax replaces the constant bound defined

in OutputVariables(i).Max
Matrix ymax (multiple outputs, time-varying bounds) The ith column of ymax replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.

Vector OutputVariables(i).Max in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)
ymax Dimension Replacement Behavior
Scalar ymax (single output, constant bound) ymax replaces the first finite entry in OutputVariables.Max

and the remaining entries in OutputVariables.Max shift up
or down with the same amount of displacement to retain the
profile defined by the original OutputVariables.Max vector.

Column vector ymax (single output, time-varying bound) ymax replaces the time-varying bound defined in
OutputVariables(i).Max, and the original bound profile is
discarded.

Row vector ymax (multiple outputs, constant bounds) The ith element of ymax replaces the first finite entry
in OutputVariables(i).Max and the remaining entries in
OutputVariables(i).Max shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Max vector.

Matrix ymax (multiple outputs, time-varying bounds). The ith column of ymax replaces the time-varying bound
defined in OutputVariables(i).Max, and the original bound
profile is discarded.

Dependencies

To enable this port, select the Upper OV limits parameter.

umin — Minimum manipulated variable constraints
vector | matrix

To specify run-time minimum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the ManipulatedVariables.Min property of
its mpc controller object. If a manipulated variable has no lower bound specified in the controller
object, then at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k to time k+p-1, connect umin to a
matrix signal with Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k
is the current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one manipulated variable, and a vector signal with no more
than p entries is connected, then these entries are used across the prediction horizon.

 MPC Controller

4-7

The ith column of the umin signal corresponds to the ith manipulated variable, and replaces the
ManipulatedVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Min in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)
umin Dimension Replacement Behavior
Scalar umin (single output, constant bound) umin replaces the constant bound defined in

ManipulatedVariables(i).Min
Column vector umin (single output, time-varying bound) umin replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.
Row vector umin (multiple outputs, constant bounds) The ith element of umin replaces the constant bound defined

in ManipulatedVariables(i).Min
Matrix umin (multiple outputs, time-varying bounds) The ith column of umin replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.

Vector ManipulatedVariables(i).Min in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)
umin Dimension Replacement Behavior
Scalar umin (single output, constant bound) umin replaces the first finite entry

in ManipulatedVariables.Min and the remaining entries in
ManipulatedVariables.Min shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Min vector.

Column vector umin (single output, time-varying bound) umin replaces the time-varying bound defined in
ManipulatedVariables(i).Min, and the original bound
profile is discarded.

Row vector umin (multiple outputs, constant bounds) The ith component of umin replaces the first finite entry
in ManipulatedVariables(i).Min and the remaining entries
in ManipulatedVariables(i).Min shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Min vector.

Matrix umin (multiple outputs, time-varying bounds). The ith column of umin replaces the time-varying bound
defined in ManipulatedVariables(i).Min, and the original
bound profile is discarded.

Dependencies

To enable this port, select the Lower MV limits parameter.

umax — Maximum manipulated variable constraints
vector | matrix

To specify run-time maximum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the ManipulatedVariables.Max property of
its mpc controller object. If a manipulated variable has no upper bound specified in the controller
object, then at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k to time k+p-1, connect umax to a
matrix signal with Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k

4 Blocks

4-8

is the current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one manipulated variable, and a vector signal with no more
than p entries is connected, then these entries are used across the prediction horizon.

The ith column of the umax signal corresponds to the ith manipulated variable, and replaces the
ManipulatedVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Max in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)

umax Dimension Replacement Behavior
Scalar umax (single output, constant bound) umax replaces the constant bound defined in

ManipulatedVariables(i).Max
Column vector umax (single output, time-varying bound) umax replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.
Row vector umax (multiple outputs, constant bounds) The ith element of umax replaces the constant bound defined

in ManipulatedVariables(i).Max
Matrix umax (multiple outputs, time-varying bounds) The ith column of umax replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.

Vector ManipulatedVariables(i).Max in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)

umax Dimension Replacement Behavior
Scalar umax (single output, constant bound) umax replaces the first finite entry

in ManipulatedVariables.Max and the remaining entries in
ManipulatedVariables.Max shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Max vector.

Column vector umax (single output, time-varying bound) umax replaces the time-varying bound defined in
ManipulatedVariables(i).Max, and the original bound
profile is discarded.

Row vector umax (multiple outputs, constant bounds) The ith element of umax replaces the first finite entry
in ManipulatedVariables(i).Max and the remaining entries
in ManipulatedVariables(i).Max shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Max vector.

Matrix umax (multiple outputs, time-varying bounds). The ith column of umax replaces the time-varying bound
defined in ManipulatedVariables(i).Max, and the original
bound profile is discarded.

Dependencies

To enable this port, select the Upper MV limits parameter.

E — Manipulated variable constraint matrix
matrix

 MPC Controller

4-9

Manipulated variable constraint matrix, specified as an Nc-by-Nmv matrix signal, where Nc is the
number of mixed input/output constraints and Nmv is the number of manipulated variables.

If you define E in the mpc object, you must connect a signal to the E input port. Otherwise, connect a
zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the E input port along with the F, G, and S
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the E matrix you specified using setconstraint.

Dependencies

To enable this port, select the Custom constraints parameter.

F — Controlled output constraint matrix
matrix

Controlled output constraint matrix, specified as an Nc-by-Ny matrix signal, where Nc is the number of
mixed input/output constraints and Ny is the number of plant outputs. If you define F in the mpc
object, you must connect a signal to the F input port with same number of rows. Otherwise, connect a
zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the F input port along with the E, G, and S
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the F matrix you specified using setconstraint.

Dependencies

To enable this port, select the Custom constraints parameter.

G — Custom constraint vector
row vector

Custom constraint vector, specified as a row vector signal of length Nc, where Nc is the number of
mixed input/output constraints. If you define G in the mpc object, you must connect a signal to the G
input port with same number of rows. Otherwise, connect a zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the G input port along with the E, F, and S
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the G matrix you specified using setconstraint.

Dependencies

To enable this port, select the Custom constraints parameter.

4 Blocks

4-10

S — Measured disturbance constraint matrix
matrix

Measured disturbance constraint matrix, specified as an Nc-by-nN matrix signal, where Nc is the
number of mixed input/output constraints, and Nv is the number of measured disturbances. If you
define S in the mpc object, you must connect a signal to the S input port with same number of rows.
Otherwise, connect a zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the S input port along with the E, F, and G
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the G matrix you specified using setconstraint.
Dependencies

To enable this port, select the Custom constraints parameter. This port is added only if the mpc
object has measured disturbances.

Online Tuning Weights

y.wt — Output variable tuning weights
row vector | matrix

To specify run-time output variable tuning weights, enable this input port. If this port is disabled, the
block uses the tuning weights specified in the Weights.OutputVariables property of its controller
object. These tuning weights penalize deviations from output references.

If the MPC controller object uses constant output tuning weights over the prediction horizon, you can
specify only constant output tuning weights at runtime. Similarly, if the MPC controller object uses
output tuning weights that vary over the prediction horizon, you can specify only time-varying output
tuning weights at runtime

To use constant tuning weights over the prediction horizon, connect y.wt to a row vector signal with
Ny elements, where Ny is the number of outputs. Each element specifies a nonnegative tuning weight
for an output variable. For more information on specifying tuning weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, connect y.wt to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the OV weights parameter.

u.wt — Manipulated variable tuning weights
row vector | matrix

To specify run-time manipulated variable tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariables
property of its controller object. These tuning weights penalize deviations from MV targets.

 MPC Controller

4-11

If the MPC controller object uses constant manipulated variable tuning weights over the prediction
horizon, you can specify only constant manipulated variable tuning weights at runtime. Similarly, if
the MPC controller object uses manipulated variable tuning weights that vary over the prediction
horizon, you can specify only time-varying manipulated variable tuning weights at runtime

To use the same tuning weights over the prediction horizon, connect u.wt to a row vector signal with
Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect u.wt to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the MV weights parameter.

du.wt — Manipulated variable rate tuning weights
row vector | matrix

To specify run-time manipulated variable rate tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariablesRate
property of its controller object. These tuning weights penalize large changes in control moves.

If the MPC controller object uses constant manipulated variable rate tuning weights over the
prediction horizon, you can specify only constant manipulated variable tuning rate weights at
runtime. Similarly, if the MPC controller object uses manipulated variable rate tuning weights that
vary over the prediction horizon, you can specify only time-varying manipulated variable rate tuning
weights at runtime

To use the same tuning weights over the prediction horizon, connect du.wt to a row vector signal
with Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable rate. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect du.wt to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the MVRate weights parameter.

ecr.wt — Slack variable tuning weight
scalar

To specify a run-time slack variable tuning weight, enable this input port and connect a scalar signal.
If this port is disabled, the block uses the tuning weight specified in the Weights.ECR property of its
controller object.

4 Blocks

4-12

The slack variable tuning weight has no effect unless your controller object defines soft constraints
whose associated ECR values are nonzero. If there are soft constraints, increasing the ecr.wt value
makes these constraints relatively harder. The controller then places a higher priority on minimizing
the magnitude of the predicted worst-case constraint violation.
Dependencies

To enable this port, select the ECR weight parameter.

Online Horizons

p — Prediction horizon
positive integer

Prediction horizon, specified as positive integer signal. The prediction horizon signal value must be
less than or equal to the Maximum prediction horizon parameter.

At run time, the values of p overrides the default prediction horizon specified in the controller object.
For more information, see “Adjust Horizons at Run Time”.
Dependencies

To enable this port, select the Adjust prediction horizon and control horizon at run time
parameter.

m — Control horizon
positive integer | vector

Control horizon, specified as one of the following:

• Positive integer signal less than or equal to the prediction horizon.
• Vector signal of positive integers specifying blocking interval lengths. For more information, see

“Manipulated Variable Blocking”.

At run time, the values of m overrides the default control horizon specified in the controller object. For
more information, see “Adjust Horizons at Run Time”.
Dependencies

To enable this port, select the Adjust prediction horizon and control horizon at run time
parameter.

Output

Required Output

mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, output as a column vector signal of length Nmv, where
Nmv is the number of manipulated variables.

If the solver converges to a local optimum solution (qp.status is positive), then mv contains the
optimal solution.

If the solver fails (qp.status is negative), then mv remains at its most recent successful solution; that
is, the controller output freezes.

 MPC Controller

4-13

If the solver reaches the maximum number of iterations without finding an optimal solution
(qp.status is zero) and the Optimization.UseSuboptimalSolution property of the controller is:

• true, then mv contains the suboptimal solution
• false, then mv then mv remains at its most recent successful solution

Additional Outputs

cost — Objective function cost
nonnegative scalar

Objective function cost, output as a nonnegative scalar signal. The cost quantifies the degree to
which the controller has achieved its objectives. The cost value is calculated using the scaled MPC
cost function in which every term is offset-free and dimensionless.

The cost value is only meaningful when the qp.status output is nonnegative.

Dependencies

To enable this port, select the Optimal cost parameter.

qp.status — Optimization status
integer

Optimization status, output as an integer signal.

If the controller solves the QP problem for a given control interval, the qp.status output returns the
number of QP solver iterations used in computation. This value is a finite, positive integer and is
proportional to the time required for the calculations. Therefore, a large value means a relatively
slow block execution for this time interval.

The QP solver can fail to find an optimal solution for the following reasons:

• qp.status = 0 — The QP solver cannot find a solution within the maximum number of iterations
specified in the mpc object. In this case, if the Optimizer.UseSuboptimalSolution property of
the controller is false, the block holds its mv output at the most recent successful solution.
Otherwise, it uses the suboptimal solution found during the last solver iteration.

• qp.status = -1 — The QP solver detects an infeasible QP problem. See “Monitoring Optimization
Status to Detect Controller Failures” for an example where a large, sustained disturbance drives
the output variable outside its specified bounds. In this case, the block holds its mv output at the
most recent successful solution.

• qp.status = -2 — The QP solver has encountered numerical difficulties in solving a severely ill-
conditioned QP problem. In this case, the block holds its mv output at the most recent successful
solution.

In a real-time application, you can use qp.status to set an alarm or take other special action.

Dependencies

To enable this port, select the Optimization status parameter.

est.state — Estimated controller states
vector

4 Blocks

4-14

Estimated controller states at each control instant, returned as a vector signal. The estimated states
include the plant, disturbance, and noise model states. If custom state estimation is used, this output
signal has the same value as the x[k|k] input signal.

Dependencies

To enable this port, select the Estimated controller states parameter.

Optimal Sequences

mv.seq — Optimal manipulated variable sequence
matrix

Optimal manipulated variable sequence, returned as a matrix signal with p+1 rows and Nmv columns,
where p is the prediction horizon and Nmv is the number of manipulated variables.

The first p rows of mv.seq contain the calculated optimal manipulated variable values from current
time k to time k+p-1. The first row of mv.seq contains the current manipulated variable values
(output mv). Since the controller does not calculate optimal control moves at time k+p, the final two
rows of mv.seq are identical.

Dependencies

To enable this port, select the Optimal control sequence parameter.

x.seq — Optimal prediction model state sequence
matrix

Optimal prediction model state sequence, returned as a matrix signal with p+1 rows and Nx columns,
where p is the prediction horizon and Nx is the number of states.

The first row of x.seq contains the current estimated state values, either from the built-in state
estimator or from the custom state estimation block input x[k|k]. The next p rows of x.seq contain
the calculated optimal state values from time k+1 to time k+p.

Dependencies

To enable this port, select the Optimal state sequence parameter.

y.seq — Optimal output variable sequence
matrix

Optimal output variable sequence, returned as a matrix signal with p+1 rows and Ny columns, where
p is the prediction horizon and Ny is the number of output variables.

The first p rows of y.seq contain the calculated optimal output values from current time k to time k
+p-1. The first row of y.seq is computed based on the current estimated states and the current
measured disturbances (first row of input md). Since the controller does not calculate optimal output
values at time k+p, the final two rows of y.seq are identical.

Dependencies

To enable this port, select the Optimal output sequence parameter.

 MPC Controller

4-15

Parameters
MPC Controller — Controller object
mpc object name

Specify an mpc object that defines an implicit MPC controller by entering the name of an mpc object
from the MATLAB workspace.

Programmatic Use
Block Parameter: mpcobj
Type: string, character vector
Default: ""

Initial Controller State — Initial state
mpcstate object name

Specify the initial controller state. If you leave this parameter blank, the block uses the nominal
values defined in the Model.Nominal property of the mpc object. To override the default, create an
mpcstate object in your workspace, and enter its name in the field.

Use this parameter make the controller states reflect the true plant environment at the start of your
simulation to the best of your knowledge. This initial states can differ from the nominal states defined
in the mpc object.

If custom state estimation is enabled, the block ignores Initial Controller State parameter.

Programmatic Use
Block Parameter: x0
Type: string, character vector
Default: ""

Design — Interactively design controller
button

To interactively modify the controller specified using the MPC Controller parameter, open the MPC
Designer app by clicking Design. For example, you can:

• Import a new prediction model.
• Change horizons, constraints, and weights.
• Evaluate MPC performance with a linear plant.
• Export the updated controller to the MATLAB workspace.

If you have an existing mpc object in the MATLAB workspace, specify the name of that object using
the MPC Controller parameter.

If you do not have an existing mpc object in the MATLAB workspace, leave the MPC Controller
parameter empty. With the MPC Controller block connected to the plant, open MPC Designer by
clicking Design. Using the app, linearize the Simulink model at a specified operating point, and
design your controller. To use this design approach, you must have Simulink Control Design software.
For more information, see “Design MPC Controller in Simulink” and “Linearize Simulink Models
Using MPC Designer”.

Review — Review controller for stability and robustness issues
button

4 Blocks

4-16

Once you specify a controller using the MPC Controller parameter, you can review your design for
run-time stability and robustness issues by clicking Review. For more information, see “Review
Model Predictive Controller for Stability and Robustness Issues”.

General Tab

Measured disturbance — Add measured disturbance input port
on (default) | off

If your controller has measured disturbances, you must select this parameter to add the md output
port to the block.

Programmatic Use
Block Parameter: md_inport
Type: string, character vector
Values: "off", "on"
Default: "on"

External manipulated variable — Add external manipulated variable input port
off (default) | on

Select this parameter to add the ext.mv input port to the block.

Programmatic Use
Block Parameter: mv_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Targets for manipulated variables — Add manipulated variable target input port
off (default) | on

Select this parameter to add the mv.target input port to the block.

Programmatic Use
Block Parameter: uref_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal cost — Add optimal cost output port
off (default) | on

Select this parameter to add the cost output port to the block.

Programmatic Use
Block Parameter: return_cost
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimization status — Add optimization status output port
off (default) | on

Select this parameter to add the qp.status output port to the block.

 MPC Controller

4-17

Programmatic Use
Block Parameter: return_qpstatus
Type: string, character vector
Values: "off", "on"
Default: "off"

Estimated controller states — Add estimated states output port
off (default) | on

Select this parameter to add the est.state output port to the block.

Programmatic Use
Block Parameter: return_state
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal control sequence — Add optimal control sequence output port
off (default) | on

Select this parameter to add the mv.seq output port to the block.

Programmatic Use
Block Parameter: return_mvseq
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal state sequence — Add optimal state sequence output port
off (default) | on

Select this parameter to add the x.seq output port to the block.

Programmatic Use
Block Parameter: return_xseq
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal output sequence — Add optimal output sequence output port
off (default) | on

Select this parameter to add the y.seq output port to the block.

Programmatic Use
Block Parameter: return_ovseq
Type: string, character vector
Values: "off", "on"
Default: "off"

Use custom state estimation instead of using the built-in Kalman filter — Use
custom state estimate input port
off (default) | on

Select this parameter to remove the mo input port and add the x[k|k] input port.

4 Blocks

4-18

Programmatic Use
Block Parameter: state_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Online Features Tab

Lower OV limits — Add minimum OV constraint input port
off (default) | on

Select this parameter to add the ymin input port to the block.

Programmatic Use
Block Parameter: ymin_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper OV limits — Add maximum OV constraint input port
off (default) | on

Select this parameter to add the ymax input port to the block.

Programmatic Use
Block Parameter: ymax_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower MV limits — Add minimum MV constraint input port
off (default) | on

Select this parameter to add the umin input port to the block.

Programmatic Use
Block Parameter: umin_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper MV limits — Add maximum MV constraint input port
off (default) | on

Select this parameter to add the umax input port to the block.

Programmatic Use
Block Parameter: umax_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Custom constraints — Add custom constraints input ports
off (default) | on

Select this parameter to add the E, F, G, and S input ports to the block.

 MPC Controller

4-19

Programmatic Use
Block Parameter: cc_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

OV weights — Add OV tuning weights input port
off (default) | on

Select this parameter to add the y.wt input port to the block.

Programmatic Use
Block Parameter: ywt_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

MV weights — Add MV tuning weights input port
off (default) | on

Select this parameter to add the u.wt input port to the block.

Programmatic Use
Block Parameter: uwt_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

MVRate weights — Add MV rate tuning weights input port
off (default) | on

Select this parameter to add the du.wt input port to the block.

Programmatic Use
Block Parameter: duwt_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Slack variable weight — Add ECR tuning weight input port
off (default) | on

Select this parameter to add the ecr.wt input port to the block.

Programmatic Use
Block Parameter: rhoeps_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Adjust prediction horizon and control horizon at run time — Add horizon input
ports
off (default) | on

Select this parameter to add the p and m input port to the block.

4 Blocks

4-20

Programmatic Use
Block Parameter: pm_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Maximum prediction horizon — Add horizon input ports
10 (default) | positive integer

Select this parameter to add the p and m input port to the block.
Dependencies

To enable this parameter, select the Adjust prediction horizon and control horizon at run time
parameter.
Programmatic Use
Block Parameter: MaximumP
Type: string, character vector
Default: "10"

Default Conditions Tab

Sample time — Default block sample time
1 (default) | positive scalar

Default block sample time for performing simulation, trimming, or linearization using the MPC
Designer app. You must specify a sample time that is compatible with your Simulink model design.
Dependencies

This parameter applies only when the MPC Controller parameter is empty and you open MPC
Designer using the Design button.
Programmatic Use
Block Parameter: n_ts
Type: string, character vector
Default: "1"

Prediction horizon — Default prediction horizon
10 (default) | positive integer

Default prediction horizon for performing simulation, trimming, or linearization using the MPC
Designer app. You must specify a prediction horizon that is compatible with your Simulink model
design.
Dependencies

This parameter applies only when the MPC Controller parameter is empty and you open MPC
Designer using the Design button.
Programmatic Use
Block Parameter: n_p
Type: string, character vector
Default: "10"

Number of manipulated variables — Default number of manipulated variables
1 (default) | positive integer

 MPC Controller

4-21

Default number of manipulated variables for performing simulation, trimming, or linearization using
the MPC Designer app. You must specify a value that is compatible with your Simulink model
design.

Dependencies

This parameter applies only when the MPC Controller parameter is empty and you open MPC
Designer using the Design button.

Programmatic Use
Block Parameter: n_mv
Type: string, character vector
Default: "1"

Number of measured disturbances — Default number of measured disturbances
1 (default) | nonnegative integer

Default number of measured disturbances for performing simulation, trimming, or linearization using
the MPC Designer app. You must specify a value that is compatible with your Simulink model
design.

Dependencies

• This parameter applies only when the MPC Controller parameter is empty and you open MPC
Designer using the Design button.

• To use this parameter, you must select the Measured disturbance parameter.

Programmatic Use
Block Parameter: n_md
Type: string, character vector
Default: "1"

Number of unmeasured disturbances — Default number of unmeasured disturbances
0 (default) | nonnegative integer

Default number of unmeasured disturbances for performing simulation, trimming, or linearization
using the MPC Designer app. You must specify a value that is compatible with your Simulink model
design.

Dependencies

This parameter applies only when the MPC Controller parameter is empty and you open MPC
Designer using the Design button.

Programmatic Use
Block Parameter: n_ud
Type: string, character vector
Default: "0"

Number of measured outputs — Default number of measured outputs
1 (default) | positive integer

Default number of measured outputs for performing simulation, trimming, or linearization using the
MPC Designer app. You must specify a value that is compatible with your Simulink model design.

4 Blocks

4-22

Dependencies

This parameter applies only when the MPC Controller parameter is empty and you open MPC
Designer using the Design button.

Programmatic Use
Block Parameter: n_mo
Type: string, character vector
Default: "1"

Number of unmeasured outputs — Default number of unmeasured outputs
0 (default) | nonnegative integer

Default number of unmeasured outputs for performing simulation, trimming, or linearization using
the MPC Designer app. You must specify a value that is compatible with your Simulink model
design.

Dependencies

This parameter applies only when the MPC Controller parameter is empty and you open MPC
Designer using the Design button.

Programmatic Use
Block Parameter: n_uo
Type: string, character vector
Default: "0"

Others Tab

Block data type — Specify data type of manipulated variables
double (default) | single | data type expression

Specify the block data type of the manipulated variables as one of the following:

• double — Double-precision floating point
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data type as
single.

• data type expression — An expression that evaluates to either double or single. For more
information, see “Control Data Types of Signals” (Simulink).

Programmatic Use
Block Parameter: BlockDataType
Type: string, character vector
Values: "double", "single", data type expression
Default: "double"

Inherit sample time — Inherit block sample time from parent subsystem
off (default) | on

Select this parameter to inherit the sample time of the parent subsystem as the block sample time.
Doing so allows you to conditionally execute this block inside Function-Call Subsystem or Triggered
Subsystem blocks. For an example, see “Using MPC Controller Block Inside Function-Call and
Triggered Subsystems”.

 MPC Controller

4-23

Note You must execute Function-Call Subsystem or Triggered Subsystem blocks at the sample rate
of the controller. Otherwise, you can see unexpected results for two reasons.

• The first element of the MV rate vector (which is the difference between the current and the last
value of the manipulated variable) is normally weighted and constrained assuming that the last
MV value occurred in the past at the sample time specified in the MPC object, and when the block
is executed with a different sample rate, this assumption no longer holds.

• The built-in Kalman estimator uses the sample time specified in the MPC object to provide an
estimation of the current state to the MPC optimization problem, so when the block is executed
with a different sample time, the estimated state is no longer correct.

If you clear this parameter (default), the sample time of the block is inherited from the controller
object.

To view the sample time of a block, in the Simulink model window, on the Debug tab, under
Information Overlays, select either colors or Text. For more information, see “View Sample Time
Information” (Simulink).

Programmatic Use
Block Parameter: SampleTimeInherited
Type: string, character vector
Values: "off", "on"
Default: "off"

Use external signal to enable or disable optimization — Add switch input port
off (default) | on

Select this parameter to add the switch input port to the block.

Programmatic Use
Block Parameter: switch_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Compatibility Considerations
MPC Simulink block mv.seq output port signal dimensions have changed
Behavior changed in R2018b

The signal dimensions of the mv.seq output port of the MPC Controller block have changed.
Previously, this signal was a p-by-Nmv matrix, where p is the prediction horizon and Nmv is the number
of manipulated variables. Now, mv.seq is a (p+1)-by-Nmv matrix, where row p+1 duplicates row p.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

4 Blocks

4-24

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
Multiple MPC Controllers | Adaptive MPC Controller

Functions
mpc | mpcstate

Apps
MPC Designer

Topics
“MPC Prediction Models”
“Design MPC Controller in Simulink”
“Simulation and Code Generation Using Simulink Coder”
“Simulation and Structured Text Generation Using Simulink PLC Coder”

Introduced before R2006a

 MPC Controller

4-25

Multiple MPC Controllers
Simulate switching between multiple implicit MPC controllers
Library: Model Predictive Control Toolbox

Description
At each control instant the Multiple MPC Controllers block receives the current measured plant
output, reference, and measured plant disturbance (if any). In addition, it receives a switching signal
that selects the active controller from a list of candidate MPC controllers designed at different
operating points within the operating range. The active controller then solves a quadratic program to
determine the optimal plant manipulated variables for the current input signals.

The Multiple MPC Controllers block enables you to achieve better control when operating conditions
change. Using available measurements, you can detect the current operating region at run time and
choose the appropriate active controller via the switch input port. Switching controllers for different
operating regions is a common approach to solving nonlinear control problems using linear control
techniques.

To improve efficiency, inactive controllers do not compute optimal control moves. However, to provide
bumpless transfer between controllers, the inactive controllers continue to perform state estimation.

The Multiple MPC Controllers block lacks several optional features found in the MPC Controller
block, as follows:

• You cannot disable optimization. One controller must always be active.
• You cannot initiate a controller design from within the block dialog box; that is, there is no Design

button. Design all candidate controllers before configuring the Multiple MPC Controllers block.
• Similarly, there is no Review button. Instead, use the review command or the MPC Designer

app.
• You cannot update custom constraints on linear combinations of inputs and outputs at run time.

Both the Multiple MPC Controllers block and the Adaptive MPC Controller block enable your control
system to adapt to changing operating conditions at run time. The following table lists the advantages
of using each block.

Block Adaptive MPC Controller Multiple MPC Controllers
Adaptation
approach

Update prediction model for a single
controller as operating conditions
change

Switch between multiple controllers
designed for different operating
regions

4 Blocks

4-26

Block Adaptive MPC Controller Multiple MPC Controllers
Advantages • Only need to design a single

controller offline
• Less run-time computational effort

and smaller memory footprint
• More robust to real-life changes in

plant conditions

• No need for online estimation of
plant model

• Controllers can have different
sample time, horizons, and weights

• Prediction models can have
different orders or time domains

• Finite set of candidate controllers
can be tested thoroughly

Ports
Input

Required Inputs

ref — Model output reference values
row vector | matrix

Plant output reference values, specified as a row vector signal or matrix signal.

To use the same reference values across the prediction horizon, connect ref to a row vector signal
with NY elements, where Ny is the number of output variables. Each element specifies the reference
for an output variable.

To vary the references over the prediction horizon (previewing) from time k+1 to time k+p, connect
ref to a matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the
prediction horizon. Each row contains the references for one prediction horizon step. If you specify
fewer than p rows, the final references are used for the remaining steps of the prediction horizon.

switch — Controller selection
integer

Use the switch input port to select the active controller. The switch input signal must be a scalar
integer from 1 to Nc, where Nc is the number of specified candidate controllers. At each control
instant, this signal designates the active controller. A switch value of 1 corresponds to the first entry
in the cell array of candidate controllers, a value of 2 corresponds to the second controller, and so on.

If the switch signal is outside of the range 1 to Nc, the block retains the previous controller output.

mo — Measured output
vector

Measured output signals, specified as a vector signal. The candidate controllers use the measured
plant outputs to improve their state estimates.

All candidate controllers must use the same state estimation option, either default or custom. If your
candidate controllers use default state estimation, you must connect the measured plant outputs to
the mo input port. If your candidate controllers use custom state estimation, you must connect the
estimated plant state signal to the x[k|k] input port.

 Multiple MPC Controllers

4-27

Dependencies

To enable this port, clear the Use custom state estimation instead of using the built-in Kalman
filter parameter.

x[k|k] — Custom state estimate
vector

Custom state estimate, specified as a vector signal. The candidate controllers use the connected state
estimates instead of estimating the states using the built-in estimator. Use custom state estimates
when an alternative estimation technique is considered superior to the built-in estimator or when the
states are fully measurable.

All candidate controllers must use the same state estimation option, either default or custom. If your
candidate controllers use custom state estimation, you must connect current state estimates to the
x[k|k] input port. If your candidate controllers use default state estimation, you must connect the
measured outputs to the mo input port.

When you use custom state estimation, all candidate controllers must have the same dimensions. All
candidate controllers must use the same state definitions (number and order of states) for their
respective plant, disturbance, and measurement noise models.

Dependencies

To enable this port, select the Use custom state estimation instead of using the built-in
Kalman filter parameter.

Additional Inputs

md — input
row vector | matrix

If your controller prediction model has measured disturbances you must enable this port and connect
to it a row vector or matrix signal.

To use the same measured disturbance values across the prediction horizon, connect md to a row
vector signal with Nmd elements, where Nmd is the number of manipulated variables. Each element
specifies the value for a measured disturbance.

To vary the disturbances over the prediction horizon (previewing) from time k to time k+p, connect
md to a matrix signal with Nmd columns and up to p+1 rows. Here, k is the current time and p is the
prediction horizon. Each row contains the disturbances for one prediction horizon step. If you specify
fewer than p+1 rows, the final disturbances are used for the remaining steps of the prediction
horizon.

Dependencies

To enable this port, select the Measured disturbances parameter.

ext.mv — Control signals used in plant at previous control interval
vector

Control signals used in the plant at the previous control interval, specified as a vector signal of length
Nmv, where Nmv is the number of manipulated variables. All candidate controllers use this signal to
update their controller state estimates at each control interval. This helps minimize bumpless
transfer when the driving controller is switched. Using this input also improves state estimation

4 Blocks

4-28

accuracy when the manipulated variables (MV) vector used in the plant differs from the MV vector
calculated by the block, for example, due to signal saturation or an override condition.

Controller state estimation assumes that the MV vector is piecewise constant. Therefore, at time tk,
the ext.mv value must be the effective MV vector between times tk–1 and tk. For example, if the MVs
are actually varying over this interval, you might supply the time-averaged value evaluated at time tk.

Note

• Connect ext.mv to the MV signals actually applied to the plant in the previous control interval.
Typically, these MV signals are the values generated by the driving controller block, though this is
not always the case. If the controller block is not driving the plant, then feeding the actual control
signal to ext.mv can also help achieve bumpless transfer when the controller is switched back
online.

• Using this option when the controller is driving the plant can cause an algebraic loop in the
Simulink model, since there is direct feedthrough from the ext.mv input to the mv outport. To
prevent such algebraic loops, insert a Memory block or Unit Delay block.

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.

Dependencies

To enable this port, select the External manipulated variable parameter.

Online Constraints

ymin — Minimum output variable constraints
vector | matrix

To specify run-time minimum output variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the OutputVariables.Min property of its
mpc controller object. If an output variable has no lower bound specified in the controller object, then
at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k+1 to time k+p, connect ymin to a
matrix signal with Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the
current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one output variable, and a vector signal with no more than p
entries is connected, then these entries are used across the prediction horizon.

The ith column of the ymin signal corresponds to the ith plant output, and replaces the
OutputVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

 Multiple MPC Controllers

4-29

Scalar OutputVariables(i).Min in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)
ymin Dimension Replacement Behavior
Scalar ymin (single output, constant bound) ymin replaces the constant bound defined in

OutputVariables(i).Min
Column vector ymin (single output, time-varying bound) ymin replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.
Row vector ymin (multiple outputs, constant bounds) The ith element of ymin replaces the constant bound defined in

OutputVariables(i).Min
Matrix ymin (multiple outputs, time-varying bounds) The ith column of ymin replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.

Vector OutputVariables(i).Min in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)
ymin Dimension Replacement Behavior
Scalar ymin (single output, constant bound) ymin replaces the first finite entry in OutputVariables.Min

and the remaining entries in OutputVariables.Min shift up
or down with the same amount of displacement to retain the
profile defined by the original OutputVariables.Min vector.

Column vector ymin (single output, time-varying bound) ymin replaces the time-varying bound defined in
OutputVariables(i).Min, and the original bound profile is
discarded.

Row vector ymin (multiple outputs, constant bounds) The ith element of ymin replaces the first finite entry
in OutputVariables(i).Min and the remaining entries in
OutputVariables(i).Min shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Min vector.

Matrix ymin (multiple outputs, time-varying bounds). The ith column of ymin replaces the time-varying bound
defined in OutputVariables(i).Min, and the original bound
profile is discarded.

Dependencies

To enable this port, select the Lower OV limits parameter.

ymax — Maximum output variable constraints
vector | matrix

To specify run-time maximum output variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the OutputVariables.Max property of its
mpc controller object. If an output variable has no upper bound specified in the controller object, then
at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k+1 to time k+p, connect ymax to a
matrix signal with Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the
current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one output variable, and a vector signal with no more than p
entries is connected, then these entries are used across the prediction horizon.

4 Blocks

4-30

The ith column of the ymax signal corresponds to the ith plant output, and replaces the
OutputVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar OutputVariables(i).Max in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)

ymax Dimension Replacement Behavior
Scalar ymax (single output, constant bound) ymax replaces the constant bound defined in

OutputVariables(i).Max
Column vector ymax (single output, time-varying bound) ymax replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.
Row vector ymax (multiple outputs, constant bounds) The ith element of ymax replaces the constant bound defined

in OutputVariables(i).Max
Matrix ymax (multiple outputs, time-varying bounds) The ith column of ymax replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.

Vector OutputVariables(i).Max in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)

ymax Dimension Replacement Behavior
Scalar ymax (single output, constant bound) ymax replaces the first finite entry in OutputVariables.Max

and the remaining entries in OutputVariables.Max shift up
or down with the same amount of displacement to retain the
profile defined by the original OutputVariables.Max vector.

Column vector ymax (single output, time-varying bound) ymax replaces the time-varying bound defined in
OutputVariables(i).Max, and the original bound profile is
discarded.

Row vector ymax (multiple outputs, constant bounds) The ith element of ymax replaces the first finite entry
in OutputVariables(i).Max and the remaining entries in
OutputVariables(i).Max shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Max vector.

Matrix ymax (multiple outputs, time-varying bounds). The ith column of ymax replaces the time-varying bound
defined in OutputVariables(i).Max, and the original bound
profile is discarded.

Dependencies

To enable this port, select the Upper OV limits parameter.

umin — Minimum manipulated variable constraints
vector | matrix

To specify run-time minimum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the ManipulatedVariables.Min property of
its mpc controller object. If a manipulated variable has no lower bound specified in the controller
object, then at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k to time k+p-1, connect umin to a
matrix signal with Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k

 Multiple MPC Controllers

4-31

is the current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one manipulated variable, and a vector signal with no more
than p entries is connected, then these entries are used across the prediction horizon.

The ith column of the umin signal corresponds to the ith manipulated variable, and replaces the
ManipulatedVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Min in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)
umin Dimension Replacement Behavior
Scalar umin (single output, constant bound) umin replaces the constant bound defined in

ManipulatedVariables(i).Min
Column vector umin (single output, time-varying bound) umin replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.
Row vector umin (multiple outputs, constant bounds) The ith element of umin replaces the constant bound defined

in ManipulatedVariables(i).Min
Matrix umin (multiple outputs, time-varying bounds) The ith column of umin replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.

Vector ManipulatedVariables(i).Min in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)
umin Dimension Replacement Behavior
Scalar umin (single output, constant bound) umin replaces the first finite entry

in ManipulatedVariables.Min and the remaining entries in
ManipulatedVariables.Min shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Min vector.

Column vector umin (single output, time-varying bound) umin replaces the time-varying bound defined in
ManipulatedVariables(i).Min, and the original bound
profile is discarded.

Row vector umin (multiple outputs, constant bounds) The ith component of umin replaces the first finite entry
in ManipulatedVariables(i).Min and the remaining entries
in ManipulatedVariables(i).Min shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Min vector.

Matrix umin (multiple outputs, time-varying bounds). The ith column of umin replaces the time-varying bound
defined in ManipulatedVariables(i).Min, and the original
bound profile is discarded.

Dependencies

To enable this port, select the Lower MV limits parameter.

umax — Maximum manipulated variable constraints
vector | matrix

To specify run-time maximum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the ManipulatedVariables.Max property of

4 Blocks

4-32

its mpc controller object. If a manipulated variable has no upper bound specified in the controller
object, then at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k to time k+p-1, connect umax to a
matrix signal with Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k
is the current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one manipulated variable, and a vector signal with no more
than p entries is connected, then these entries are used across the prediction horizon.

The ith column of the umax signal corresponds to the ith manipulated variable, and replaces the
ManipulatedVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Max in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)

umax Dimension Replacement Behavior
Scalar umax (single output, constant bound) umax replaces the constant bound defined in

ManipulatedVariables(i).Max
Column vector umax (single output, time-varying bound) umax replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.
Row vector umax (multiple outputs, constant bounds) The ith element of umax replaces the constant bound defined

in ManipulatedVariables(i).Max
Matrix umax (multiple outputs, time-varying bounds) The ith column of umax replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.

Vector ManipulatedVariables(i).Max in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)

umax Dimension Replacement Behavior
Scalar umax (single output, constant bound) umax replaces the first finite entry

in ManipulatedVariables.Max and the remaining entries in
ManipulatedVariables.Max shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Max vector.

Column vector umax (single output, time-varying bound) umax replaces the time-varying bound defined in
ManipulatedVariables(i).Max, and the original bound
profile is discarded.

Row vector umax (multiple outputs, constant bounds) The ith element of umax replaces the first finite entry
in ManipulatedVariables(i).Max and the remaining entries
in ManipulatedVariables(i).Max shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Max vector.

Matrix umax (multiple outputs, time-varying bounds). The ith column of umax replaces the time-varying bound
defined in ManipulatedVariables(i).Max, and the original
bound profile is discarded.

Dependencies

To enable this port, select the Upper MV limits parameter.

 Multiple MPC Controllers

4-33

Online Tuning Weights

y.wt — Output variable tuning weights
row vector | matrix

To specify run-time output variable tuning weights, enable this input port. If this port is disabled, the
block uses the tuning weights specified in the Weights.OutputVariables property of its controller
object. These tuning weights penalize deviations from output references.

If the MPC controller object uses constant output tuning weights over the prediction horizon, you can
specify only constant output tuning weights at runtime. Similarly, if the MPC controller object uses
output tuning weights that vary over the prediction horizon, you can specify only time-varying output
tuning weights at runtime

To use constant tuning weights over the prediction horizon, connect y.wt to a row vector signal with
Ny elements, where Ny is the number of outputs. Each element specifies a nonnegative tuning weight
for an output variable. For more information on specifying tuning weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, connect y.wt to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the OV weights parameter.

u.wt — Manipulated variable tuning weights
row vector | matrix

To specify run-time manipulated variable tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariables
property of its controller object. These tuning weights penalize deviations from MV targets.

If the MPC controller object uses constant manipulated variable tuning weights over the prediction
horizon, you can specify only constant manipulated variable tuning weights at runtime. Similarly, if
the MPC controller object uses manipulated variable tuning weights that vary over the prediction
horizon, you can specify only time-varying manipulated variable tuning weights at runtime

To use the same tuning weights over the prediction horizon, connect u.wt to a row vector signal with
Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect u.wt to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the MV weights parameter.

4 Blocks

4-34

du.wt — Manipulated variable rate tuning weights
row vector | matrix

To specify run-time manipulated variable rate tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariablesRate
property of its controller object. These tuning weights penalize large changes in control moves.

If the MPC controller object uses constant manipulated variable rate tuning weights over the
prediction horizon, you can specify only constant manipulated variable tuning rate weights at
runtime. Similarly, if the MPC controller object uses manipulated variable rate tuning weights that
vary over the prediction horizon, you can specify only time-varying manipulated variable rate tuning
weights at runtime

To use the same tuning weights over the prediction horizon, connect du.wt to a row vector signal
with Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable rate. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect du.wt to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.

Dependencies

To enable this port, select the MVRate weights parameter.

ecr.wt — Slack variable tuning weight
scalar

To specify a run-time slack variable tuning weight, enable this input port and connect a scalar signal.
If this port is disabled, the block uses the tuning weight specified in the Weights.ECR property of its
controller object.

The slack variable tuning weight has no effect unless your controller object defines soft constraints
whose associated ECR values are nonzero. If there are soft constraints, increasing the ecr.wt value
makes these constraints relatively harder. The controller then places a higher priority on minimizing
the magnitude of the predicted worst-case constraint violation.

Dependencies

To enable this port, select the ECR weight parameter.

Output

Required Output

mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, output as a column vector signal of length Nmv, where
Nmv is the number of manipulated variables. The Multiple MPC Controllers block passes the output of
the active controller to the mv output port.

 Multiple MPC Controllers

4-35

If the solver of the active controller converges to a local optimum solution (qp.status is positive),
then mv contains the optimal solution.

If the solver fails (qp.status is negative), then mv remains at its most recent successful solution; that
is, the controller output freezes.

If the solver reaches the maximum number of iterations without finding an optimal solution
(qp.status is zero) and the Optimization.UseSuboptimalSolution property of the active
controller is:

• true, then mv contains the suboptimal solution
• false, then mv then mv remains at its most recent successful solution

Additional Outputs

cost — Objective function cost
nonnegative scalar

Objective function cost, output as a nonnegative scalar signal. The cost quantifies the degree to
which the controller has achieved its objectives. The cost value is calculated using the scaled MPC
cost function in which every term is offset-free and dimensionless.

The cost value is only meaningful when the qp.status output is nonnegative.

Dependencies

To enable this port, select the Optimal cost parameter.

qp.status — Optimization status
integer

Optimization status of the active controller, output as an integer signal.

If the active controller solves the QP problem for a given control interval, the qp.status output
returns the number of QP solver iterations used in computation. This value is a finite, positive integer
and is proportional to the time required for the calculations. Therefore, a large value means a
relatively slow block execution for this time interval.

The QP solver can fail to find an optimal solution for the following reasons:

• qp.status = 0 — The QP solver cannot find a solution within the maximum number of iterations
specified in the mpc object. In this case, if the Optimizer.UseSuboptimalSolution property of
the active controller is false, the block holds its mv output at the most recent successful
solution. Otherwise, it uses the suboptimal solution found during the last solver iteration.

• qp.status = -1 — The QP solver detects an infeasible QP problem. See “Monitoring Optimization
Status to Detect Controller Failures” for an example where a large, sustained disturbance drives
the output variable outside its specified bounds. In this case, the block holds its mv output at the
most recent successful solution.

• qp.status = -2 — The QP solver has encountered numerical difficulties in solving a severely ill-
conditioned QP problem. In this case, the block holds its mv output at the most recent successful
solution.

In a real-time application, you can use qp.status to set an alarm or take other special action.

4 Blocks

4-36

Dependencies

To enable this port, select the Optimization status parameter.

est.state — Estimated controller states
vector

Estimated controller states of the active controller, output as a vector signal. The estimated states
include the plant, disturbance, and noise model states.

Dependencies

To enable this port, select the Estimated controller states parameter.

Optimal Sequences

mv.seq — Optimal manipulated variable sequence
matrix

Optimal manipulated variable sequence, returned as a matrix signal with p+1 rows and Nmv columns,
where p is the prediction horizon and Nmv is the number of manipulated variables.

The first p rows of mv.seq contain the calculated optimal manipulated variable values from current
time k to time k+p-1. The first row of mv.seq contains the current manipulated variable values
(output mv). Since the controller does not calculate optimal control moves at time k+p, the final two
rows of mv.seq are identical.

Dependencies

To enable this port, select the Optimal control sequence parameter.

x.seq — Optimal prediction model state sequence
matrix

Optimal prediction model state sequence, returned as a matrix signal with p+1 rows and Nx columns,
where p is the prediction horizon and Nx is the number of states.

The first row of x.seq contains the current estimated state values, either from the built-in state
estimator or from the custom state estimation block input x[k|k]. The next p rows of x.seq contain
the calculated optimal state values from time k+1 to time k+p.

Dependencies

To enable this port, select the Optimal state sequence parameter.

y.seq — Optimal output variable sequence
matrix

Optimal output variable sequence, returned as a matrix signal with p+1 rows and Ny columns, where
p is the prediction horizon and Ny is the number of output variables.

The first p rows of y.seq contain the calculated optimal output values from current time k to time k
+p-1. The first row of y.seq is computed based on the current estimated states and the current
measured disturbances (first row of input md). Since the controller does not calculate optimal output
values at time k+p, the final two rows of y.seq are identical.

 Multiple MPC Controllers

4-37

Dependencies

To enable this port, select the Optimal output sequence parameter.

Parameters
Cell Array of MPC Controllers — Candidate controllers
cell array of mpc objects | cell array of strings | cell array of character vectors

Candidate controllers, specified as one of the following:

• Cell array of mpc objects.
• Cell array of strings or a cell array of character vectors, where each element is the name of an

mpc object in the MATLAB workspace.

The specified array must contain at least two candidate controllers. The first entry in the cell array is
the controller that corresponds to a switch input value of 1, the second corresponds to a switch input
value of 2, and so on.

Programmatic Use
Block Parameter: mpcobjs
Type: string, character vector, cell array of strings, cell array of character vectors
Default: ""

Cell Array of Initial Controller States — Initial state
cell array of mpcstate objects | cell array of strings | cell array of character vectors

Initial states for the candidate controllers, specified as one of the following:

• Cell array of mpcstate objects.
• Cell array of strings or a cell array of character vectors, where each element is the name of an

mpcstate object in the MATLAB workspace.
• {[],[],...}, {'[]','[]',...}, or {"[]","[]",...} — Use the nominal condition defined

in Model.Nominal property of each candidate controller as its initial state.

Use this parameter make the controller states reflect the true plant environment at the start of your
simulation to the best of your knowledge. This initial states can differ from the nominal states defined
in the mpc objects.

If custom state estimation is enabled, the block ignores Cell Array of Initial Controller States
parameter.

Programmatic Use
Block Parameter: x0s
Type: string, character vector, cell array of strings, cell array of character vectors
Default: ""

General Tab

Measured disturbances — Add measured disturbance input port
on (default) | off

If your controller has measured disturbances, you must select this parameter to add the md output
port to the block.

4 Blocks

4-38

Programmatic Use
Block Parameter: md_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "on"

External manipulated variable — Add external manipulated variable input port
off (default) | on

Select this parameter to add the ext.mv input port to the block.

Programmatic Use
Block Parameter: mv_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Targets for manipulated variables — Add manipulated variable target input port
off (default) | on

Select this parameter to add the mv.target input port to the block.

Programmatic Use
Block Parameter: uref_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal cost — Add optimal cost output port
off (default) | on

Select this parameter to add the cost output port to the block.

Programmatic Use
Block Parameter: return_cost_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimization status — Add optimization status output port
off (default) | on

Select this parameter to add the qp.status output port to the block.

Programmatic Use
Block Parameter: return_qpstatus_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Estimated controller states — Add estimated states output port
off (default) | on

Select this parameter to add the est.state output port to the block.

 Multiple MPC Controllers

4-39

Programmatic Use
Block Parameter: return_state_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal control sequence — Add optimal control sequence output port
off (default) | on

Select this parameter to add the mv.seq output port to the block.
Programmatic Use
Block Parameter: return_mvseq_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal state sequence — Add optimal state sequence output port
off (default) | on

Select this parameter to add the x.seq output port to the block.
Programmatic Use
Block Parameter: return_xseq_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal output sequence — Add optimal output sequence output port
off (default) | on

Select this parameter to add the y.seq output port to the block.
Programmatic Use
Block Parameter: return_ovseq_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Use custom state estimation instead of using the built-in Kalman filter — Use
custom state estimate input port
off (default) | on

Select this parameter to remove the mo input port and add the x[k|k] input port.
Programmatic Use
Block Parameter: state_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Online Features Tab

Lower OV limits — Add minimum OV constraint input port
off (default) | on

Select this parameter to add the ymin input port to the block.

4 Blocks

4-40

Programmatic Use
Block Parameter: ymin_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper OV limits — Add maximum OV constraint input port
off (default) | on

Select this parameter to add the ymax input port to the block.

Programmatic Use
Block Parameter: ymax_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower MV limits — Add minimum MV constraint input port
off (default) | on

Select this parameter to add the umin input port to the block.

Programmatic Use
Block Parameter: umin_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper MV limits — Add maximum MV constraint input port
off (default) | on

Select this parameter to add the umax input port to the block.

Programmatic Use
Block Parameter: umax_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Custom constraints — Add custom constraints input ports
off (default) | on

Select this parameter to add the E, F, G, and S input ports to the block.

Programmatic Use
Block Parameter: cc_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

OV weights — Add OV tuning weights input port
off (default) | on

Select this parameter to add the y.wt input port to the block.

 Multiple MPC Controllers

4-41

Programmatic Use
Block Parameter: ywt_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

MV weights — Add MV tuning weights input port
off (default) | on

Select this parameter to add the u.wt input port to the block.

Programmatic Use
Block Parameter: uwt_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

MVRate weights — Add MV rate tuning weights input port
off (default) | on

Select this parameter to add the du.wt input port to the block.

Programmatic Use
Block Parameter: duwt_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Slack variable weight — Add ECR tuning weight input port
off (default) | on

Select this parameter to add the ecr.wt input port to the block.

Programmatic Use
Block Parameter: rhoeps_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Others Tab

Block data type — Specify data type of manipulated variables
double (default) | single | data type expression

Specify the block data type of the manipulated variables as one of the following:

• double — Double-precision floating point
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data type as
single.

• data type expression — An expression that evaluates to either double or single. For more
information see “Control Data Types of Signals” (Simulink).

4 Blocks

4-42

Programmatic Use
Block Parameter: BlockDataType_multiple
Type: string, character vector
Values: "double", "single", data type expression
Default: "double"

Inherit sample time — Inherit block sample time from parent subsystem
off (default) | on

Select this parameter to inherit the sample time of the parent subsystem as the block sample time.
Doing so allows you to conditionally execute this block inside Function-Call Subsystem or Triggered
Subsystem blocks. For an example, see “Using MPC Controller Block Inside Function-Call and
Triggered Subsystems”.

Note You must execute Function-Call Subsystem or Triggered Subsystem blocks at the sample rate
of the controller. Otherwise, you can see unexpected results for two reasons.

• The first element of the MV rate vector (which is the difference between the current and the last
value of the manipulated variable) is normally weighted and constrained assuming that the last
MV value occurred in the past at the sample time specified in the MPC object, and when the block
is executed with a different sample rate, this assumption no longer holds.

• The built-in Kalman estimator uses the sample time specified in the MPC object to provide an
estimation of the current state to the MPC optimization problem, so when the block is executed
with a different sample time, the estimated state is no longer correct.

If you clear this parameter (default), the sample time of the block is inherited from the controller
object.

To view the sample time of a block, in the Simulink model window, on the Debug tab, under
Information Overlays, select either colors or Text. For more information, see “View Sample Time
Information” (Simulink).

Programmatic Use
Block Parameter: SampleTimeInherited_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Compatibility Considerations
MPC Simulink block mv.seq output port signal dimensions have changed
Behavior changed in R2018b

The signal dimensions of the mv.seq output port of the Multiple MPC Controllers block have
changed. Previously, this signal was a p-by-Nmv matrix, where p is the prediction horizon and Nmv is
the number of manipulated variables. Now, mv.seq is a (p+1)-by-Nmv matrix, where row p+1
duplicates row p.

 Multiple MPC Controllers

4-43

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
MPC Controller | Multiple Explicit MPC Controllers

Functions
mpc | mpcmoveMultiple | mpcstate

Topics
“Gain-Scheduled MPC”
“Design Workflow”
“Simulation and Code Generation Using Simulink Coder”
“Simulation and Structured Text Generation Using Simulink PLC Coder”

Introduced in R2008b

4 Blocks

4-44

Explicit MPC Controller
Explicit model predictive controller
Library: Model Predictive Control Toolbox

Description
The Explicit MPC Controller block uses the following input signals:

• Either measured plant outputs (mo) or custom state estimate (x[k|k])
• Reference or setpoint (ref)
• Measured plant disturbance (md), if any

The Explicit MPC Controller block uses a lookup table to store the precalculated piecewise-affine
optimal control law instead of solving a quadratic programming optimization problem at runtime at
each control interval like the MPC Controller block. Given the same MPC problem, the two blocks
return the same solution. The Explicit MPC Controller block requires less online computational effort,
which is useful for applications that need a short control interval. It has, however, a heavier offline
computational effort and a larger memory footprint. Indeed, the combinatorial nature of explicit MPC
restricts its usage to applications with relatively few inputs, outputs, and state variables, a short
prediction horizon, and few output constraints.

The Explicit MPC Controller supports only a subset of optional MPC features, as outlined in the
following table.

Supported Features Unsupported Features
• Built-in (Kalman filter) and custom state

estimation
• Outport for state estimation results
• External manipulated variable feedback signal

inport
• Single-precision block data (default is double

precision)
• Inherited sample time

• Online tuning (penalty weight adjustments)
• Online constraint adjustments
• Online manipulated variable target

adjustments
• Reference and/or measured disturbance

previewing

 Explicit MPC Controller

4-45

Ports
Input

Required Inputs

mo — Measured outputs
vector

Measured outputs, specified as a vector signal. The block uses the measured plant outputs to improve
its state estimates. If your controller uses default state estimation, you must connect the measured
plant outputs to the mo input port. If your controller uses custom state estimation, you must connect
the estimated plant states to the x[k|k] input port.

Dependencies

To enable this port, clear the Use custom state estimation instead of using the built-in Kalman
filter parameter.

x[k|k] — Custom state estimate
vector

Custom state estimate, specified as a vector signal. The block uses the connected state estimates
instead of estimating the states using the built-in estimator. If your controller uses custom state
estimation, you must connect the current state estimates to the x[k|k] input port. If your controller
uses default state estimation, you must connect the measured output to the mo input port.

Even though noise model states (if any) are not used in MPC optimization, the custom state vector
must contain all the states defined in the mpcstate object of the controller, including the plant,
disturbance, and noise model states.

Use custom state estimates when an alternative estimation technique is considered superior to the
built-in estimator or when the states are fully measurable.

Dependencies

To enable this port, select the Use custom state estimation instead of using the built-in
Kalman filter parameter.

ref — Model reference output
vector

At each control instant, the ref signal must contain the current reference values (targets or
setpoints) for the ny output variables, where ny is the total number of outputs, including measured
and unmeasured outputs. Since this block does not support reference previewing, ref must be a
vector signal.

Additional Inputs

md — Measured disturbances
vector

If your controller prediction model has measured disturbances, you must enable this port and connect
to it a row vector signal containing Nmd elements, where Nmd is the number of measured
disturbances.

4 Blocks

4-46

Since this block does not support measured disturbance previewing, md must be a vector signal.

Dependencies

To enable this port, select the Measured disturbances parameter.

ext.mv — Control signals used in plant at previous control interval
vector

Control signals used in the plant at the previous control interval, specified as a vector signal of length
Nmv, where Nmv is the number of manipulated variables. Use this input port to improve state
estimation accuracy when:

• You know your controller is not always in control of the plant.
• The actual MV signals applied to the plant can potentially differ from the values generated by the

controller, such as in control signal saturation.

Controller state estimation assumes that the MVs are piecewise constant. Therefore, at time tk, the
ext.mv value must contain the effective MVs between times tk–1 and tk. For example, if the MVs are
actually varying over this interval, you might supply the time-averaged value evaluated at time tk.

Note

• Connect ext.mv to the MV signals actually applied to the plant in the previous control interval.
Typically, these MV signals are the values generated by the controller, though this is not always
the case. For example, if your controller is offline and running in tracking mode (that is, the
controller output is not driving the plant), then feeding the actual control signal to ext.mv can
help achieve bumpless transfer when the controller is switched back online.

• When the controller is driving the plant, insert a Memory block or Unit Delay block to feed back
the MV signal applied to the plant at the previous control interval. This also avoids a direct
feedthrough from the ext.mv inport to the mv outport, therefore preventing algebraic loops in the
Simulink model.

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.

Dependencies

To enable this port, select the External manipulated variable parameter.

switch — Disable evaluation
scalar

To turn off the controller evaluation, connect switch to a nonzero signal.

Disabling controller evaluation reduces computational effort when the controller output is not
needed, such as when the system is operating manually or another controller has taken over.
However, the controller continues to update its internal state estimates in the usual way. Therefore, it
is ready to resume evaluations whenever the switch signal returns to zero. While controller
evaluation is off, the block passes the current ext.mv signal to the controller output. If the ext.mv
inport is not enabled, the controller output is held at the value it had when evaluation was disabled.

 Explicit MPC Controller

4-47

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.

Dependencies

To enable this port, select the Use external signal to enable controller evaluation parameter.

Output

Required Output

mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, returned as a column vector signal of length Nmv, where
Nmv is the number of manipulated variables.

The controller updates its mv output at each control instant using the control law contained in the
explicit MPC controller object. If the control law evaluation is not successful, mv is unchanged (that
is, it is held at the previous successful result) and the status output, if present, becomes either 0 or
–1.

Additional Outputs

status — Status of piecewise affine function evaluation
1 | 0 | -1

This output indicates whether the latest explicit MPC control-law evaluation succeeded. The outport
provides a scalar signal that has one of the following values:

• 1 — Successful explicit control law evaluation
• 0 — Failure due to one or more control law parameters out of range
• –1 — Control law parameters were within the valid range but an extrapolation was necessary

If status is either 0 or –1, the mv outport remains at the last known good value.

Dependencies

To enable this port, select the Status of piecewise affine function evaluation parameter.

region — Region number of evaluated piecewise affine function
nonnegative integer

This output provides the index of the polyhedral region used in the latest explicit control law
evaluation. If the control law evaluation fails, the signal at this outport is zero.

Dependencies

To enable this port, select the Region number of evaluated piecewise affine function parameter.

est.state — Estimated controller states
vector

Estimated controller states at each control instant, returned as a vector signal. The estimated states
include the plant, disturbance, and noise model states. If custom state estimation is used, this output
signal has the same value as the x[k|k] input signal.

4 Blocks

4-48

Dependencies

To enable this port, select the Estimated controller states parameter.

Parameters
Explicit MPC Controller — Explicit controller object
explicitMPC object name

An explicitMPC object containing the control law to be used. It must exist in the MATLAB
workspace. Use the generateExplicitMPC command to create this object.

Programmatic Use
Block Parameter: empcobj
Type: string, character vector
Default: ""

Initial Controller State — Initial state
mpcstate object name

An optional mpcstate object specifying the initial controller state. If you leave this parameter blank,
the block uses the nominal values defined in the Model.Nominal property of the explicitMPC
object. To override the default values, create an mpcstate object in your workspace, and enter its
name in the field. You can use this parameter to make the controller states reflect the true plant
environment at the start of your simulation to the best of your knowledge.

If custom state estimation is enabled, the block ignores the Initial Controller State parameter.

Programmatic Use
Block Parameter: x0
Type: string, character vector
Default: ""

General Tab

Measured disturbance — Add measured disturbance input port
on (default) | off

If your controller has measured disturbances, you must select this parameter to add the md output
port to the block.

Programmatic Use
Block Parameter: md_inport
Type: string, character vector
Values: "off", "on"
Default: "on"

External manipulated variable — Add external manipulated variable input port
off (default) | on

Select this parameter to add the ext.mv input port to the block.

Programmatic Use
Block Parameter: mv_inport
Type: string, character vector

 Explicit MPC Controller

4-49

Values: "off", "on"
Default: "off"

Status of piecewise affine function evaluation — Add evaluation status output port
off (default) | on

Select this parameter to add the status output port to the block.

Programmatic Use
Block Parameter: return_status
Type: string, character vector
Values: "off", "on"
Default: "on"

Region number of evaluated piecewise affine function — Add region number output
port
off (default) | on

Select this parameter to add the region output port to the block.

Programmatic Use
Block Parameter: return_region
Type: string, character vector
Values: "off", "on"
Default: "off"

Estimated controller states — Add estimated states output port
off (default) | on

Select this parameter to add the est.state output port to the block.

Programmatic Use
Block Parameter: return_state
Type: string, character vector
Values: "off", "on"
Default: "off"

Use custom state estimation instead of using the built-in Kalman filter — Use
custom state estimate input port
off (default) | on

Select this parameter to remove the mo input port and add the x[k|k] input port.

Programmatic Use
Block Parameter: state_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Others Tab

Block data type — Specify data type of manipulated variables
double (default) | single | data type expression

Specify the block data type of the manipulated variables as one of the following:

4 Blocks

4-50

• double — Double-precision floating point
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data type as
single.

• data type expression — An expression that evaluates to either double or single. For more
information, see “Control Data Types of Signals” (Simulink).

Programmatic Use
Block Parameter: BlockDataType
Type: string, character vector
Values: "double", "single", data type expression
Default: "double"

Inherit sample time — Inherit block sample time from parent subsystem
off (default) | on

Select this parameter to inherit the sample time of the parent subsystem as the block sample time.
Doing so allows you to conditionally execute this block inside Function-Call Subsystem or Triggered
Subsystem blocks. For an example, see “Using MPC Controller Block Inside Function-Call and
Triggered Subsystems”.

Note You must execute Function-Call Subsystem or Triggered Subsystem blocks at the sample rate
of the controller. Otherwise, you can see unexpected results for two reasons.

• The first element of the MV rate vector (which is the difference between the current and the last
value of the manipulated variable) is normally weighted and constrained assuming that the last
MV value occurred in the past at the sample time specified in the MPC object, and when the block
is executed with a different sample rate, this assumption no longer holds.

• The built-in Kalman estimator uses the sample time specified in the MPC object to provide an
estimation of the current state to the MPC optimization problem, so when the block is executed
with a different sample time, the estimated state is no longer correct.

If you clear this parameter (default), the sample time of the block is inherited from the controller
object.

To view the sample time of a block, in the Simulink model window, on the Debug tab, under
Information Overlays, select either colors or Text. For more information, see “View Sample Time
Information” (Simulink).
Programmatic Use
Block Parameter: SampleTimeInherited
Type: string, character vector
Values: "off", "on"
Default: "off"

Use external signal to enable controller evaluation — Add a switch-off input port
off (default) | on

Select this parameter to add the switch input port to the block. Whenever a nonzero signal is fed to
the switch input port, the controller evaluation is turned off. See the switch input port for more
details.

 Explicit MPC Controller

4-51

Programmatic Use
Block Parameter: switch_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
MPC Controller | Multiple Explicit MPC Controllers

Functions
mpc | generateExplicitMPC | mpcmoveExplicit | mpcstate

Topics
“Explicit MPC”
“Design Workflow for Explicit MPC”
“Explicit MPC Control of a Single-Input-Single-Output Plant”

Introduced in R2014b

4 Blocks

4-52

Adaptive MPC Controller
Simulate adaptive and time-varying model predictive controllers
Library: Model Predictive Control Toolbox

Description
The Adaptive MPC Controller block uses the following input signals:

• Measured plant outputs (mo)
• Reference or setpoint (ref)
• Measured plant disturbance (md), if any

In addition, the required model input signal specifies the prediction model to use when computing
the optimal plant manipulated variables mv. The linear prediction model can change at each control
interval in response to changes in the real plant at run time. The prediction model can represent a
single LTI plant used for all prediction steps (adaptive MPC mode) or an array of LTI plants for
different prediction steps (time-varying MPC mode). Two common ways to modify this model are as
follows:

• Given a nonlinear plant model, linearize it at the current operating point.
• Use plant data to estimate parameters in an empirical linear-time-varying (LTV) model.

By default, the block estimates its prediction model states. Since the prediction model parameters
change at run time, the static Kalman filter used in the MPC Controller block is inappropriate.
Instead, the Adaptive MPC Controller block uses a linear-time-varying Kalman filter (LTVKF). For
more information, see “Adaptive MPC”.

In all other ways, the Adaptive MPC Controller block mimics the MPC Controller block. Since the
adaptive version involves additional overhead, use the MPC Controller block unless you need to
control a nonlinear plant across a wide range of operating conditions where plant dynamics vary
significantly.

Both the Adaptive MPC Controller block and the Multiple MPC Controllers block enable your control
system to adapt to changing operating conditions at run time. The following table lists the advantages
of using each block.

Block Adaptive MPC Controller Multiple MPC Controllers
Adaptation
approach

Update prediction model for a single
controller as operating conditions
change

Switch between multiple controllers
designed for different operating
regions

 Adaptive MPC Controller

4-53

Block Adaptive MPC Controller Multiple MPC Controllers
Advantages • Only need to design a single

controller offline
• Less run-time computational effort

and smaller memory footprint
• More robust to real-life changes in

plant conditions

• No need for online estimation of
plant model

• Controllers can have different
sample time, horizons, and weights

• Prediction models can have
different orders or time domains

• Finite set of candidate controllers
can be tested thoroughly

Ports
Input

Required Inputs

model — Updated plant model and nominal operating point
bus signal

Updated plant model and nominal operating point, specified as a bus signal. a bus signal to the
model inport. At the beginning of each control interval, this signal modifies the controller object
Model.Plant and Model.Nominal properties.

The Adaptive MPC Controller requires the plant model to be an LTI discrete-time state-space object
with no delays. The following command extracts the state-space matrices comprising such a model.

[A,B,C,D] = ssdata(MPCobj.Model.Plant)

The purpose of the model input is to replace these matrices with new ones having the same
dimensions and representing the same control interval. You must also retain the sequence in which
the input, output, and state variables appear in the Model.Plant property of the controller.

When operating in:

• Adaptive MPC mode, the bus you connect to the model inport must contain the following signals,
each identified by the specified name:

• A — nx-by-nx matrix signal, where nx is the number of plant model states.
• B — nx-by-nu matrix signal, where nu is the total number of plant model inputs (i.e.,

manipulated variables, measured disturbances, and unmeasured disturbances).
• C — ny-by-nx matrix signal, where ny is the number of plant model outputs.
• D — ny-by-nu matrix signal.
• X — Vector signal of length nx, replacing the controller Model.Nominal.X property.
• Y — Vector signal of length ny, replacing the controller Model.Nominal.Y property.
• U — Vector signal of length nu, replacing the controller Model.Nominal.U property.
• DX — Vector signal of length nx, replacing the controller Model.Nominal.DX property. It must

be appropriate for use with a discrete-time model of the assumed control interval. For more
information, see “Adaptive MPC”.

4 Blocks

4-54

To compute DX values, use the discrete-time state update function (f) for your model. Here, uk
and xk are the respective input and state values for the current time step.

DX = f (uk, xk)− xk

• Time-varying MPC mode, the bus you connect to the model inport must contain the following 3–
dimensional bus signals:

• A — nx-by-nx-by-(p+1) matrix signal
• B — nx-by-nu-by-(p+1) matrix signal
• C — ny-by-nx-by-(p+1)
• D — ny-by-nu-by-(p+1) matrix signal
• X — nx-by-(p+1) matrix signal
• Y — ny-by-(p+1) matrix signal
• U — nu-by-(p+1) matrix signal
• DX — nx-by-(p+1) matrix signal

Here, p is the controller prediction horizon. For each signal, specify p+1 values representing the
model and nominal conditions at each step of the prediction horizon. For more information, see
“Time-Varying MPC”.

One way to form the bus is to use a Bus Creator block.

Dependencies

The dimensions of the bus elements in model depend on the operating mode of the controller. To
place the controller in:

• Adaptive MPC mode, clear the Linear Time-Varying (LTV) plants parameter
• Time-varying MPC mode, select the Linear Time-Varying (LTV) plants parameter

ref — Model output reference values
row vector | matrix

Plant output reference values, specified as a row vector signal or matrix signal.

To use the same reference values across the prediction horizon, connect ref to a row vector signal
with NY elements, where Ny is the number of output variables. Each element specifies the reference
for an output variable.

To vary the references over the prediction horizon (previewing) from time k+1 to time k+p, connect
ref to a matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the
prediction horizon. Each row contains the references for one prediction horizon step. If you specify
fewer than p rows, the final references are used for the remaining steps of the prediction horizon.

mo — Measured outputs
vector

Measured outputs, specified as a vector signal. The block uses the measured plant outputs to improve
its state estimates. If your controller uses default state estimation, you must connect the measured
plant outputs to the mo input port. If your controller uses custom state estimation, you must connect
the estimated plant states to the x[k|k] input port.

 Adaptive MPC Controller

4-55

Dependencies

To enable this port, clear the Use custom state estimation instead of using the built-in Kalman
filter parameter.

x[k|k] — Custom state estimate
vector

Custom state estimate, specified as a vector signal. The block uses the connected state estimates
instead of estimating the states using the built-in estimator. If your controller uses custom state
estimation, you must connect the current state estimates to the x[k|k] input port. If your controller
uses default state estimation, you must connect the measured output to the mo input port.

Even though noise model states (if any) are not used in MPC optimization, the custom state vector
must contain all the states defined in the mpcstate object of the controller, including the plant,
disturbance, and noise model states.

Use custom state estimates when an alternative estimation technique is considered superior to the
built-in estimator or when the states are fully measurable.

Dependencies

To enable this port, select the Use custom state estimation instead of using the built-in
Kalman filter parameter.

Additional Inputs

md — input
row vector | matrix

If your controller prediction model has measured disturbances you must enable this port and connect
to it a row vector or matrix signal.

To use the same measured disturbance values across the prediction horizon, connect md to a row
vector signal with Nmd elements, where Nmd is the number of manipulated variables. Each element
specifies the value for a measured disturbance.

To vary the disturbances over the prediction horizon (previewing) from time k to time k+p, connect
md to a matrix signal with Nmd columns and up to p+1 rows. Here, k is the current time and p is the
prediction horizon. Each row contains the disturbances for one prediction horizon step. If you specify
fewer than p+1 rows, the final disturbances are used for the remaining steps of the prediction
horizon.

Dependencies

To enable this port, select the Measured disturbances parameter.

ext.mv — Control signals used in plant at previous control interval
vector

Control signals used in the plant at the previous control interval, specified as a vector signal of length
Nmv, where Nmv is the number of manipulated variables. Use this input port to improve state
estimation accuracy when:

• You know your controller is not always in control of the plant.

4 Blocks

4-56

• The actual MV signals applied to the plant can potentially differ from the values generated by the
controller, such as in control signal saturation.

Controller state estimation assumes that the MVs are piecewise constant. Therefore, at time tk, the
ext.mv value must contain the effective MVs between times tk–1 and tk. For example, if the MVs are
actually varying over this interval, you might supply the time-averaged value evaluated at time tk.

Note

• Connect ext.mv to the MV signals actually applied to the plant in the previous control interval.
Typically, these MV signals are the values generated by the controller, though this is not always
the case. For example, if your controller is offline and running in tracking mode (that is, the
controller output is not driving the plant), then feeding the actual control signal to ext.mv can
help achieve bumpless transfer when the controller is switched back online.

• When the controller is driving the plant, insert a Memory block or Unit Delay block to feed back
the MV signal applied to the plant at the previous control interval. This also avoids a direct
feedthrough from the ext.mv inport to the mv outport, therefore preventing algebraic loops in the
Simulink model.

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.

Dependencies

To enable this port, select the External manipulated variable parameter.

switch — Enable or disable optimization
scalar

To turn off the controller optimization calculations, connect switch to a nonzero signal.

Disabling optimization calculations reduces computational effort when the controller output is not
needed, such as when the system is operating manually or another controller has taken over.
However, the controller continues to update its internal state estimates in the usual way. Therefore, it
is ready to resume optimization calculations whenever the switch signal returns to zero. While
controller optimization is off, the block passes the current ext.mv signal to the controller output. If
the ext.mv inport is not enabled, the controller output is held at the value it had when optimization
was disabled.

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.

Dependencies

To enable this port, select the Use external signal to enable or disable optimization parameter.

mv.target — Manipulated variable targets
vector

To specify manipulated variable targets, enable this input port, and connect a vector signal. To make
a given manipulated variable track its specified target value, you must also specify a nonzero tuning
weight for that manipulated variable.

 Adaptive MPC Controller

4-57

The supplied mv.target values at run-time apply across the prediction horizon.

Dependencies

To enable this port, select the Targets for manipulated variables parameter.

Online Constraints

ymin — Minimum output variable constraints
vector | matrix

To specify run-time minimum output variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the OutputVariables.Min property of its
mpc controller object. If an output variable has no lower bound specified in the controller object, then
at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k+1 to time k+p, connect ymin to a
matrix signal with Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the
current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one output variable, and a vector signal with no more than p
entries is connected, then these entries are used across the prediction horizon.

The ith column of the ymin signal corresponds to the ith plant output, and replaces the
OutputVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar OutputVariables(i).Min in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)

ymin Dimension Replacement Behavior
Scalar ymin (single output, constant bound) ymin replaces the constant bound defined in

OutputVariables(i).Min
Column vector ymin (single output, time-varying bound) ymin replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.
Row vector ymin (multiple outputs, constant bounds) The ith element of ymin replaces the constant bound defined in

OutputVariables(i).Min
Matrix ymin (multiple outputs, time-varying bounds) The ith column of ymin replaces the constant bound defined in

OutputVariables(i).Min with a time-varying bound.

4 Blocks

4-58

Vector OutputVariables(i).Min in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)

ymin Dimension Replacement Behavior
Scalar ymin (single output, constant bound) ymin replaces the first finite entry in OutputVariables.Min

and the remaining entries in OutputVariables.Min shift up
or down with the same amount of displacement to retain the
profile defined by the original OutputVariables.Min vector.

Column vector ymin (single output, time-varying bound) ymin replaces the time-varying bound defined in
OutputVariables(i).Min, and the original bound profile is
discarded.

Row vector ymin (multiple outputs, constant bounds) The ith element of ymin replaces the first finite entry
in OutputVariables(i).Min and the remaining entries in
OutputVariables(i).Min shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Min vector.

Matrix ymin (multiple outputs, time-varying bounds). The ith column of ymin replaces the time-varying bound
defined in OutputVariables(i).Min, and the original bound
profile is discarded.

Dependencies

To enable this port, select the Lower OV limits parameter.

ymax — Maximum output variable constraints
vector | matrix

To specify run-time maximum output variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the OutputVariables.Max property of its
mpc controller object. If an output variable has no upper bound specified in the controller object, then
at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k+1 to time k+p, connect ymax to a
matrix signal with Ny columns and up to p rows. Here, Ny is the number of plant outputs, k is the
current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one output variable, and a vector signal with no more than p
entries is connected, then these entries are used across the prediction horizon.

The ith column of the ymax signal corresponds to the ith plant output, and replaces the
OutputVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

 Adaptive MPC Controller

4-59

Scalar OutputVariables(i).Max in the mpc object (a constant bound for the ith plant
output to be applied to all prediction steps)
ymax Dimension Replacement Behavior
Scalar ymax (single output, constant bound) ymax replaces the constant bound defined in

OutputVariables(i).Max
Column vector ymax (single output, time-varying bound) ymax replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.
Row vector ymax (multiple outputs, constant bounds) The ith element of ymax replaces the constant bound defined

in OutputVariables(i).Max
Matrix ymax (multiple outputs, time-varying bounds) The ith column of ymax replaces the constant bound defined in

OutputVariables(i).Max with a time-varying bound.

Vector OutputVariables(i).Max in the mpc object (a time-varying bound for the ith plant
output with different values at different prediction steps)
ymax Dimension Replacement Behavior
Scalar ymax (single output, constant bound) ymax replaces the first finite entry in OutputVariables.Max

and the remaining entries in OutputVariables.Max shift up
or down with the same amount of displacement to retain the
profile defined by the original OutputVariables.Max vector.

Column vector ymax (single output, time-varying bound) ymax replaces the time-varying bound defined in
OutputVariables(i).Max, and the original bound profile is
discarded.

Row vector ymax (multiple outputs, constant bounds) The ith element of ymax replaces the first finite entry
in OutputVariables(i).Max and the remaining entries in
OutputVariables(i).Max shift up or down with the same
amount of displacement to retain the profile defined by the
original OutputVariables(i).Max vector.

Matrix ymax (multiple outputs, time-varying bounds). The ith column of ymax replaces the time-varying bound
defined in OutputVariables(i).Max, and the original bound
profile is discarded.

Dependencies

To enable this port, select the Upper OV limits parameter.

umin — Minimum manipulated variable constraints
vector | matrix

To specify run-time minimum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the ManipulatedVariables.Min property of
its mpc controller object. If a manipulated variable has no lower bound specified in the controller
object, then at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k to time k+p-1, connect umin to a
matrix signal with Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k
is the current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one manipulated variable, and a vector signal with no more
than p entries is connected, then these entries are used across the prediction horizon.

4 Blocks

4-60

The ith column of the umin signal corresponds to the ith manipulated variable, and replaces the
ManipulatedVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Min in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)
umin Dimension Replacement Behavior
Scalar umin (single output, constant bound) umin replaces the constant bound defined in

ManipulatedVariables(i).Min
Column vector umin (single output, time-varying bound) umin replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.
Row vector umin (multiple outputs, constant bounds) The ith element of umin replaces the constant bound defined

in ManipulatedVariables(i).Min
Matrix umin (multiple outputs, time-varying bounds) The ith column of umin replaces the constant bound defined in

ManipulatedVariables(i).Min with a time-varying bound.

Vector ManipulatedVariables(i).Min in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)
umin Dimension Replacement Behavior
Scalar umin (single output, constant bound) umin replaces the first finite entry

in ManipulatedVariables.Min and the remaining entries in
ManipulatedVariables.Min shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Min vector.

Column vector umin (single output, time-varying bound) umin replaces the time-varying bound defined in
ManipulatedVariables(i).Min, and the original bound
profile is discarded.

Row vector umin (multiple outputs, constant bounds) The ith component of umin replaces the first finite entry
in ManipulatedVariables(i).Min and the remaining entries
in ManipulatedVariables(i).Min shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Min vector.

Matrix umin (multiple outputs, time-varying bounds). The ith column of umin replaces the time-varying bound
defined in ManipulatedVariables(i).Min, and the original
bound profile is discarded.

Dependencies

To enable this port, select the Lower MV limits parameter.

umax — Maximum manipulated variable constraints
vector | matrix

To specify run-time maximum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the ManipulatedVariables.Max property of
its mpc controller object. If a manipulated variable has no upper bound specified in the controller
object, then at run time the block ignores the corresponding connected signal.

To change the bounds over the prediction horizon from time k to time k+p-1, connect umax to a
matrix signal with Nmv columns and up to p rows. Here, Nmv is the number of manipulated variables, k

 Adaptive MPC Controller

4-61

is the current time, and p is the prediction horizon. Each row contains the bounds for one prediction
horizon step. If you specify fewer than p rows, the bounds in the final row apply for the remainder of
the prediction horizon. If there is only one manipulated variable, and a vector signal with no more
than p entries is connected, then these entries are used across the prediction horizon.

The ith column of the umax signal corresponds to the ith manipulated variable, and replaces the
ManipulatedVariables(i).Max property of the mpc object at run time. The replacement behavior
depends on the dimensions of both variables.

Scalar ManipulatedVariables(i).Max in the mpc object (a constant bound for the ith
manipulated variable to be applied to all prediction steps)

umax Dimension Replacement Behavior
Scalar umax (single output, constant bound) umax replaces the constant bound defined in

ManipulatedVariables(i).Max
Column vector umax (single output, time-varying bound) umax replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.
Row vector umax (multiple outputs, constant bounds) The ith element of umax replaces the constant bound defined

in ManipulatedVariables(i).Max
Matrix umax (multiple outputs, time-varying bounds) The ith column of umax replaces the constant bound defined in

ManipulatedVariables(i).Max with a time-varying bound.

Vector ManipulatedVariables(i).Max in the mpc object (a time-varying bound for the ith
manipulated variable with different values at different prediction steps)

umax Dimension Replacement Behavior
Scalar umax (single output, constant bound) umax replaces the first finite entry

in ManipulatedVariables.Max and the remaining entries in
ManipulatedVariables.Max shift up or down with the same
amount of displacement to retain the profile defined by the
original ManipulatedVariables.Max vector.

Column vector umax (single output, time-varying bound) umax replaces the time-varying bound defined in
ManipulatedVariables(i).Max, and the original bound
profile is discarded.

Row vector umax (multiple outputs, constant bounds) The ith element of umax replaces the first finite entry
in ManipulatedVariables(i).Max and the remaining entries
in ManipulatedVariables(i).Max shift up or down with the
same amount of displacement to retain the profile defined by
the original ManipulatedVariables(i).Max vector.

Matrix umax (multiple outputs, time-varying bounds). The ith column of umax replaces the time-varying bound
defined in ManipulatedVariables(i).Max, and the original
bound profile is discarded.

Dependencies

To enable this port, select the Upper MV limits parameter.

E — Manipulated variable constraint matrix
matrix

4 Blocks

4-62

Manipulated variable constraint matrix, specified as an Nc-by-Nmv matrix signal, where Nc is the
number of mixed input/output constraints and Nmv is the number of manipulated variables.

If you define E in the mpc object, you must connect a signal to the E input port. Otherwise, connect a
zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the E input port along with the F, G, and S
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the E matrix you specified using setconstraint.

Dependencies

To enable this port, select the Custom constraints parameter.

F — Controlled output constraint matrix
matrix

Controlled output constraint matrix, specified as an Nc-by-Ny matrix signal, where Nc is the number of
mixed input/output constraints and Ny is the number of plant outputs. If you define F in the mpc
object, you must connect a signal to the F input port with same number of rows. Otherwise, connect a
zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the F input port along with the E, G, and S
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the F matrix you specified using setconstraint.

Dependencies

To enable this port, select the Custom constraints parameter.

G — Custom constraint vector
row vector

Custom constraint vector, specified as a row vector signal of length Nc, where Nc is the number of
mixed input/output constraints. If you define G in the mpc object, you must connect a signal to the G
input port with same number of rows. Otherwise, connect a zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the G input port along with the E, F, and S
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the G matrix you specified using setconstraint.

Dependencies

To enable this port, select the Custom constraints parameter.

 Adaptive MPC Controller

4-63

S — Measured disturbance constraint matrix
matrix

Measured disturbance constraint matrix, specified as an Nc-by-nN matrix signal, where Nc is the
number of mixed input/output constraints, and Nv is the number of measured disturbances. If you
define S in the mpc object, you must connect a signal to the S input port with same number of rows.
Otherwise, connect a zero matrix with the correct size.

To specify run-time mixed input/output constraints, use the S input port along with the E, F, and G
ports. These constraints replace the mixed input/output constraints previously set using
setconstraint. For more information on mixed input/output constraints, see “Constraints on Linear
Combinations of Inputs and Outputs”.

The number of mixed input/output constraints cannot change at run time. Therefore, Nc must match
the number of rows in the G matrix you specified using setconstraint.
Dependencies

To enable this port, select the Custom constraints parameter. This port is added only if the mpc
object has measured disturbances.

Online Tuning Weights

y.wt — Output variable tuning weights
row vector | matrix

To specify run-time output variable tuning weights, enable this input port. If this port is disabled, the
block uses the tuning weights specified in the Weights.OutputVariables property of its controller
object. These tuning weights penalize deviations from output references.

If the MPC controller object uses constant output tuning weights over the prediction horizon, you can
specify only constant output tuning weights at runtime. Similarly, if the MPC controller object uses
output tuning weights that vary over the prediction horizon, you can specify only time-varying output
tuning weights at runtime

To use constant tuning weights over the prediction horizon, connect y.wt to a row vector signal with
Ny elements, where Ny is the number of outputs. Each element specifies a nonnegative tuning weight
for an output variable. For more information on specifying tuning weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, connect y.wt to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the OV weights parameter.

u.wt — Manipulated variable tuning weights
row vector | matrix

To specify run-time manipulated variable tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariables
property of its controller object. These tuning weights penalize deviations from MV targets.

4 Blocks

4-64

If the MPC controller object uses constant manipulated variable tuning weights over the prediction
horizon, you can specify only constant manipulated variable tuning weights at runtime. Similarly, if
the MPC controller object uses manipulated variable tuning weights that vary over the prediction
horizon, you can specify only time-varying manipulated variable tuning weights at runtime

To use the same tuning weights over the prediction horizon, connect u.wt to a row vector signal with
Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect u.wt to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the MV weights parameter.

du.wt — Manipulated variable rate tuning weights
row vector | matrix

To specify run-time manipulated variable rate tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariablesRate
property of its controller object. These tuning weights penalize large changes in control moves.

If the MPC controller object uses constant manipulated variable rate tuning weights over the
prediction horizon, you can specify only constant manipulated variable tuning rate weights at
runtime. Similarly, if the MPC controller object uses manipulated variable rate tuning weights that
vary over the prediction horizon, you can specify only time-varying manipulated variable rate tuning
weights at runtime

To use the same tuning weights over the prediction horizon, connect du.wt to a row vector signal
with Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable rate. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect du.wt to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the MVRate weights parameter.

ecr.wt — Slack variable tuning weight
scalar

To specify a run-time slack variable tuning weight, enable this input port and connect a scalar signal.
If this port is disabled, the block uses the tuning weight specified in the Weights.ECR property of its
controller object.

 Adaptive MPC Controller

4-65

The slack variable tuning weight has no effect unless your controller object defines soft constraints
whose associated ECR values are nonzero. If there are soft constraints, increasing the ecr.wt value
makes these constraints relatively harder. The controller then places a higher priority on minimizing
the magnitude of the predicted worst-case constraint violation.
Dependencies

To enable this port, select the ECR weight parameter.

Online Horizons

p — Prediction horizon
positive integer

Prediction horizon, specified as positive integer signal. The prediction horizon signal value must be
less than or equal to the Maximum prediction horizon parameter.

At run time, the values of p overrides the default prediction horizon specified in the controller object.
For more information, see “Adjust Horizons at Run Time”.
Dependencies

To enable this port, select the Adjust prediction horizon and control horizon at run time
parameter.

m — Control horizon
positive integer | vector

Control horizon, specified as one of the following:

• Positive integer signal less than or equal to the prediction horizon.
• Vector signal of positive integers specifying blocking interval lengths. For more information, see

“Manipulated Variable Blocking”.

At run time, the values of m overrides the default control horizon specified in the controller object. For
more information, see “Adjust Horizons at Run Time”.
Dependencies

To enable this port, select the Adjust prediction horizon and control horizon at run time
parameter.

Output

Required Output

mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, output as a column vector signal of length Nmv, where
Nmv is the number of manipulated variables.

If the solver converges to a local optimum solution (qp.status is positive), then mv contains the
optimal solution.

If the solver fails (qp.status is negative), then mv remains at its most recent successful solution; that
is, the controller output freezes.

4 Blocks

4-66

If the solver reaches the maximum number of iterations without finding an optimal solution
(qp.status is zero) and the Optimization.UseSuboptimalSolution property of the controller is:

• true, then mv contains the suboptimal solution
• false, then mv then mv remains at its most recent successful solution

Additional Outputs

cost — Objective function cost
nonnegative scalar

Objective function cost, output as a nonnegative scalar signal. The cost quantifies the degree to
which the controller has achieved its objectives. The cost value is calculated using the scaled MPC
cost function in which every term is offset-free and dimensionless.

The cost value is only meaningful when the qp.status output is nonnegative.

Dependencies

To enable this port, select the Optimal cost parameter.

qp.status — Optimization status
integer

Optimization status, output as an integer signal.

If the controller solves the QP problem for a given control interval, the qp.status output returns the
number of QP solver iterations used in computation. This value is a finite, positive integer and is
proportional to the time required for the calculations. Therefore, a large value means a relatively
slow block execution for this time interval.

The QP solver can fail to find an optimal solution for the following reasons:

• qp.status = 0 — The QP solver cannot find a solution within the maximum number of iterations
specified in the mpc object. In this case, if the Optimizer.UseSuboptimalSolution property of
the controller is false, the block holds its mv output at the most recent successful solution.
Otherwise, it uses the suboptimal solution found during the last solver iteration.

• qp.status = -1 — The QP solver detects an infeasible QP problem. See “Monitoring Optimization
Status to Detect Controller Failures” for an example where a large, sustained disturbance drives
the output variable outside its specified bounds. In this case, the block holds its mv output at the
most recent successful solution.

• qp.status = -2 — The QP solver has encountered numerical difficulties in solving a severely ill-
conditioned QP problem. In this case, the block holds its mv output at the most recent successful
solution.

In a real-time application, you can use qp.status to set an alarm or take other special action.

Dependencies

To enable this port, select the Optimization status parameter.

est.state — Estimated controller states
vector

 Adaptive MPC Controller

4-67

Estimated controller states at each control instant, returned as a vector signal. The estimated states
include the plant, disturbance, and noise model states. If custom state estimation is used, this output
signal has the same value as the x[k|k] input signal.

Dependencies

To enable this port, select the Estimated controller states parameter.

Optimal Sequences

mv.seq — Optimal manipulated variable sequence
matrix

Optimal manipulated variable sequence, returned as a matrix signal with p+1 rows and Nmv columns,
where p is the prediction horizon and Nmv is the number of manipulated variables.

The first p rows of mv.seq contain the calculated optimal manipulated variable values from current
time k to time k+p-1. The first row of mv.seq contains the current manipulated variable values
(output mv). Since the controller does not calculate optimal control moves at time k+p, the final two
rows of mv.seq are identical.

Dependencies

To enable this port, select the Optimal control sequence parameter.

x.seq — Optimal prediction model state sequence
matrix

Optimal prediction model state sequence, returned as a matrix signal with p+1 rows and Nx columns,
where p is the prediction horizon and Nx is the number of states.

The first row of x.seq contains the current estimated state values, either from the built-in state
estimator or from the custom state estimation block input x[k|k]. The next p rows of x.seq contain
the calculated optimal state values from time k+1 to time k+p.

Dependencies

To enable this port, select the Optimal state sequence parameter.

y.seq — Optimal output variable sequence
matrix

Optimal output variable sequence, returned as a matrix signal with p+1 rows and Ny columns, where
p is the prediction horizon and Ny is the number of output variables.

The first p rows of y.seq contain the calculated optimal output values from current time k to time k
+p-1. The first row of y.seq is computed based on the current estimated states and the current
measured disturbances (first row of input md). Since the controller does not calculate optimal output
values at time k+p, the final two rows of y.seq are identical.

Dependencies

To enable this port, select the Optimal output sequence parameter.

4 Blocks

4-68

Parameters
Adaptive MPC Controller — Controller object
mpc object name

Specify an mpc object that defines an MPC controller by entering the name of an mpc object designed
at the nominal operating point of the block. At run time, the controller replaces the original
prediction model (A, B, C, and D) and nominal values (U, Y, X, and DX) with the data specified in the
model input port at each control instant.

By default, the block assumes all other controller object properties (for example tuning weights,
constraints) are constant. You can override this assumption using the options in the Online Features
section.

The following restrictions apply to the mpc controller object:

• It must exist in the MATLAB workspace.
• Its prediction model must be an LTI discrete-time, state-space object with no delays. Use the

absorbDelay command to convert delays to discrete states. The dimensions of the A, B, C, and D
matrices in the prediction determine the dimensions required by the model inport signal.

Programmatic Use
Block Parameter: mpcobj
Type: string, character vector
Default: ""

Initial Controller State — Initial state
mpcstate object name

Specify the initial controller state. If you leave this parameter blank, the block uses the nominal
values defined in the Model.Nominal property of the mpc object. To override the default, create an
mpcstate object in your workspace, and enter its name in the field.

Use this parameter make the controller states reflect the true plant environment at the start of your
simulation to the best of your knowledge. This initial states can differ from the nominal states defined
in the mpc object.

If custom state estimation is enabled, the block ignores Initial Controller State parameter.

Programmatic Use
Block Parameter: x0
Type: string, character vector
Default: ""

General Tab

Measured disturbance — Add measured disturbance input port
on (default) | off

If your controller has measured disturbances, you must select this parameter to add the md output
port to the block.

Programmatic Use
Block Parameter: md_inport
Type: string, character vector

 Adaptive MPC Controller

4-69

Values: "off", "on"
Default: "on"

External manipulated variable — Add external manipulated variable input port
off (default) | on

Select this parameter to add the ext.mv input port to the block.

Programmatic Use
Block Parameter: mv_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Targets for manipulated variables — Add manipulated variable target input port
off (default) | on

Select this parameter to add the mv.target input port to the block.

Programmatic Use
Block Parameter: uref_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal cost — Add optimal cost output port
off (default) | on

Select this parameter to add the cost output port to the block.

Programmatic Use
Block Parameter: return_cost
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimization status — Add optimization status output port
off (default) | on

Select this parameter to add the qp.status output port to the block.

Programmatic Use
Block Parameter: return_qpstatus
Type: string, character vector
Values: "off", "on"
Default: "off"

Estimated controller states — Add estimated states output port
off (default) | on

Select this parameter to add the est.state output port to the block.

Programmatic Use
Block Parameter: return_state
Type: string, character vector
Values: "off", "on"

4 Blocks

4-70

Default: "off"

Optimal control sequence — Add optimal control sequence output port
off (default) | on

Select this parameter to add the mv.seq output port to the block.

Programmatic Use
Block Parameter: return_mvseq
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal state sequence — Add optimal state sequence output port
off (default) | on

Select this parameter to add the x.seq output port to the block.

Programmatic Use
Block Parameter: return_xseq
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal output sequence — Add optimal output sequence output port
off (default) | on

Select this parameter to add the y.seq output port to the block.

Programmatic Use
Block Parameter: return_ovseq
Type: string, character vector
Values: "off", "on"
Default: "off"

Use custom state estimation instead of using the built-in Kalman filter — Use
custom state estimate input port
off (default) | on

Select this parameter to remove the mo input port and add the x[k|k] input port.

Programmatic Use
Block Parameter: state_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Online Features Tab

Linear Time-Varying (LTV) plants — Use custom state estimate input port
off (default) | on

To operate your controller in time-varying MPC mode, select this option. When operating in this
mode, connect a 3–dimensional bus signal to the model input port

For an example, see “Time-Varying MPC Control of a Time-Varying Plant”.

 Adaptive MPC Controller

4-71

Programmatic Use
Block Parameter: isltv_plant
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower OV limits — Add minimum OV constraint input port
off (default) | on

Select this parameter to add the ymin input port to the block.

Programmatic Use
Block Parameter: ymin_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper OV limits — Add maximum OV constraint input port
off (default) | on

Select this parameter to add the ymax input port to the block.

Programmatic Use
Block Parameter: ymax_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower MV limits — Add minimum MV constraint input port
off (default) | on

Select this parameter to add the umin input port to the block.

Programmatic Use
Block Parameter: umin_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper MV limits — Add maximum MV constraint input port
off (default) | on

Select this parameter to add the umax input port to the block.

Programmatic Use
Block Parameter: umax_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Custom constraints — Add custom constraints input ports
off (default) | on

Select this parameter to add the E, F, G, and S input ports to the block.

4 Blocks

4-72

Programmatic Use
Block Parameter: cc_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

OV weights — Add OV tuning weights input port
off (default) | on

Select this parameter to add the y.wt input port to the block.

Programmatic Use
Block Parameter: ywt_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

MV weights — Add MV tuning weights input port
off (default) | on

Select this parameter to add the u.wt input port to the block.

Programmatic Use
Block Parameter: uwt_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

MVRate weights — Add MV rate tuning weights input port
off (default) | on

Select this parameter to add the du.wt input port to the block.

Programmatic Use
Block Parameter: duwt_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Slack variable weight — Add ECR tuning weight input port
off (default) | on

Select this parameter to add the ecr.wt input port to the block.

Programmatic Use
Block Parameter: rhoeps_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Adjust prediction horizon and control horizon at run time — Add horizon input
ports
off (default) | on

Select this parameter to add the p and m input port to the block.

 Adaptive MPC Controller

4-73

Programmatic Use
Block Parameter: pm_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Maximum prediction horizon — Add horizon input ports
10 (default) | positive integer

Select this parameter to add the p and m input port to the block.

Dependencies

To enable this parameter, select the Adjust prediction horizon and control horizon at run time
parameter.

Programmatic Use
Block Parameter: MaximumP
Type: string, character vector
Default: "10"

Others Tab

Inherit sample time — Inherit block sample time from parent subsystem
off (default) | on

Select this parameter to inherit the sample time of the parent subsystem as the block sample time.
Doing so allows you to conditionally execute this block inside Function-Call Subsystem or Triggered
Subsystem blocks. For an example, see “Using MPC Controller Block Inside Function-Call and
Triggered Subsystems”.

Note You must execute Function-Call Subsystem or Triggered Subsystem blocks at the sample rate
of the controller. Otherwise, you can see unexpected results for two reasons.

• The first element of the MV rate vector (which is the difference between the current and the last
value of the manipulated variable) is normally weighted and constrained assuming that the last
MV value occurred in the past at the sample time specified in the MPC object, and when the block
is executed with a different sample rate, this assumption no longer holds.

• The built-in Kalman estimator uses the sample time specified in the MPC object to provide an
estimation of the current state to the MPC optimization problem, so when the block is executed
with a different sample time, the estimated state is no longer correct.

If you clear this parameter (default), the sample time of the block is inherited from the controller
object.

To view the sample time of a block, in the Simulink model window, on the Debug tab, under
Information Overlays, select either colors or Text. For more information, see “View Sample Time
Information” (Simulink).

Programmatic Use
Block Parameter: SampleTimeInherited
Type: string, character vector

4 Blocks

4-74

Values: "off", "on"
Default: "off"

Use external signal to enable or disable optimization — Add switch input port
off (default) | on

Select this parameter to add the switch input port to the block.

Programmatic Use
Block Parameter: switch_inport
Type: string, character vector
Values: "off", "on"
Default: "off"

Compatibility Considerations
MPC Simulink block mv.seq output port signal dimensions have changed
Behavior changed in R2018b

The signal dimensions of the mv.seq output port of the Adaptive MPC Controller block have
changed. Previously, this signal was a p-by-Nmv matrix, where p is the prediction horizon and Nmv is
the number of manipulated variables. Now, mv.seq is a (p+1)-by-Nmv matrix, where row p+1
duplicates row p.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
MPC Controller | Multiple MPC Controllers

Functions
mpc | mpcmoveAdaptive | mpcstate

Topics
“Adaptive MPC”
“Time-Varying MPC”
“Simulation and Code Generation Using Simulink Coder”
“Simulation and Structured Text Generation Using Simulink PLC Coder”

Introduced in R2014b

 Adaptive MPC Controller

4-75

Multiple Explicit MPC Controllers
Multiple explicit MPC controllers
Library: Model Predictive Control Toolbox

Description
The Multiple Explicit MPC Controllers block uses the following input signals:

• Measured plant outputs (mo)
• Reference or setpoint (ref)
• Measured plant disturbance (md), if any
• Switching signal (switch)

The Multiple Explicit MPC Controllers block enables you to transition between multiple explicit MPC
controllers in real time based on the current operating conditions. Typically, you design each
controller for a particular region of the operating space. Using available measurements, you detect
the current operating region and select the appropriate active controller using the switch inport.

The switching signal selects the active controller among a list of two or more candidate explicit MPC
controllers. These controllers reduce online computational effort by using a table-lookup control law
during each control interval instead of solving a quadratic programming problem. For more
information, see Explicit MPC Controller.

To improve efficiency, inactive controllers do not evaluate their control law. However, to provide
bumpless transfer between controllers, the inactive controllers continue to perform state estimation.

Like for the Multiple MPC Controllers block, you cannot disable evaluation for the Multiple Explicit
MPC Controllers block. One controller must always be active.

Like the Explicit MPC Controller block, the Multiple Explicit MPC Controllers block supports only a
subset of optional MPC features, as outlined in the following table.

4 Blocks

4-76

Supported Features Unsupported Features
• Built-in (Kalman filter) and custom state

estimation
• Outport for state estimation results
• External manipulated variable feedback signal

inport
• Single-precision block data (default is double

precision)
• Inherited sample time

• Online tuning (penalty weight adjustments)
• Online constraint adjustments
• Online manipulated variable target

adjustments
• Reference and/or measured disturbance

previewing

Ports
Input

Required Inputs

switch — Controller selection
integer

Use the switch input port to select the active controller. The switch input signal must be a scalar
integer from 1 to Nc, where Nc is the number of specified candidate controllers. At each control
instant, this signal designates the active controller. A switch value of 1 corresponds to the first entry
in the cell array of candidate controllers, a value of 2 corresponds to the second controller, and so on.

If the switch signal is outside of the range 1 to Nc, the block retains the previous controller output.

mo — Measured output
vector

Measured output signals, specified as a vector signal. The candidate controllers use the measured
plant outputs to improve their state estimates.

All candidate controllers must use the same state estimation option, either default or custom. If your
candidate controllers use default state estimation, you must connect the measured plant outputs to
the mo input port. If your candidate controllers use custom state estimation, you must connect the
estimated plant state signal to the x[k|k] input port.

Dependencies

To enable this port, clear the Use custom state estimation instead of using the built-in Kalman
filter parameter.

x[k|k] — Custom state estimate
vector

Custom state estimate, specified as a vector signal. The candidate controllers use the connected state
estimates instead of estimating the states using the built-in estimator. Use custom state estimates
when an alternative estimation technique is considered superior to the built-in estimator or when the
states are fully measurable.

All candidate controllers must use the same state estimation option, either default or custom. If your
candidate controllers use custom state estimation, you must connect current state estimates to the

 Multiple Explicit MPC Controllers

4-77

x[k|k] input port. If your candidate controllers use default state estimation, you must connect the
measured outputs to the mo input port.

When you use custom state estimation, all candidate controllers must have the same dimensions. All
candidate controllers must use the same state definitions (number and order of states) for their
respective plant, disturbance, and measurement noise models.

Dependencies

To enable this port, select the Use custom state estimation instead of using the built-in
Kalman filter parameter.

ref — Model reference output
vector

At each control instant, the ref signal must contain the current reference values (targets or
setpoints) for the ny output variables, where ny is the total number of outputs, including measured
and unmeasured outputs. Since this block does not support reference previewing, ref must be a
vector signal.

Additional Inputs

md — Measured disturbances
vector

If your controller prediction model has measured disturbances, you must enable this port and connect
to it a row vector signal containing Nmd elements, where Nmd is the number of measured
disturbances.

Since this block does not support measured disturbance previewing, md must be a vector signal.

Dependencies

To enable this port, select the Measured disturbances parameter.

ext.mv — Control signals used in plant at previous control interval
vector

Control signals used in the plant at the previous control interval, specified as a vector signal of length
Nmv, where Nmv is the number of manipulated variables. All candidate controllers use this signal to
update their controller state estimates at each control interval. This helps minimize bumpless
transfer when the driving controller is switched. Using this input also improves state estimation
accuracy when the manipulated variables (MV) vector used in the plant differs from the MV vector
calculated by the block, for example, due to signal saturation or an override condition.

Controller state estimation assumes that the MV vector is piecewise constant. Therefore, at time tk,
the ext.mv value must be the effective MV vector between times tk–1 and tk. For example, if the MVs
are actually varying over this interval, you might supply the time-averaged value evaluated at time tk.

Note

• Connect ext.mv to the MV signals actually applied to the plant in the previous control interval.
Typically, these MV signals are the values generated by the driving controller block, though this is
not always the case. If the controller block is not driving the plant, then feeding the actual control

4 Blocks

4-78

signal to ext.mv can also help achieve bumpless transfer when the controller is switched back
online.

• Using this option when the controller is driving the plant can cause an algebraic loop in the
Simulink model, since there is direct feedthrough from the ext.mv input to the mv outport. To
prevent such algebraic loops, insert a Memory block or Unit Delay block.

For an example that uses the external manipulated variable input port for bumpless transfer, see
“Switch Controller Online and Offline with Bumpless Transfer”.
Dependencies

To enable this port, select the External manipulated variable parameter.

Output

Required Output

mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, returned as a column vector signal of length Nmv, where
Nmv is the number of manipulated variables.

The Multiple Explicit MPC Controllers block passes the output of the active controller to the mv
output. Therefore, the active controller updates the mv output at each control instant using the
control law contained in its explicit MPC controller object. If the control law evaluation fails, this
signal is unchanged; that is, it is held at the previous successful result.

Additional Outputs

status — Status of piecewise affine function evaluation
1 | 0 | -1

This output indicates whether the latest explicit MPC control-law evaluation succeeded. The outport
provides a scalar signal that has one of the following values:

• 1 — Successful explicit control law evaluation
• 0 — Failure due to one or more control law parameters out of range
• –1 — Control law parameters were within the valid range but an extrapolation was necessary

If status is either 0 or –1, the mv outport remains at the last known good value.
Dependencies

To enable this port, select the Status of piecewise affine function evaluation parameter.

region — Region number of evaluated piecewise affine function
nonnegative integer

This output provides the index of the polyhedral region used in the latest explicit control law
evaluation. If the control law evaluation fails, the signal at this outport is zero.
Dependencies

To enable this port, select the Region number of evaluated piecewise affine function parameter.

 Multiple Explicit MPC Controllers

4-79

est.state — Estimated controller states
vector

Estimated controller states at each control instant, returned as a vector signal. The estimated states
include the plant, disturbance, and noise model states. If custom state estimation is used, this output
signal has the same value as the x[k|k] input signal.

Dependencies

To enable this port, select the Estimated controller states parameter.

Parameters
Cell Array of Explicit MPC Controllers — Candidate controllers
cell array of explicitMPC objects | cell array of strings | cell array of character vectors

Candidate controllers, specified as one of the following:

• Cell array of explicitMPC objects
• Cell array of strings or a cell array of character vectors, where each element is the name of an

explicitMPC object in the MATLAB workspace

The specified array must contain at least two candidate controllers. The first entry in the cell array is
the controller that corresponds to a switch input value of 1, the second corresponds to a switch input
value of 2, and so on.

Programmatic Use
Block Parameter: empcobjs
Type: string, character vector, cell array of strings, cell array of character vectors
Default: ""

Cell Array of Initial Controller States — Initial state
cell array of mpcstate objects | cell array of strings | cell array of character vectors

Initial states for the candidate controllers, specified as one of the following:

• Cell array of mpcstate objects.
• Cell array of strings or a cell array of character vectors, where each element is the name of an

mpcstate object in the MATLAB workspace.
• {[],[],...}, {'[]','[]',...}, or {"[]","[]",...} — Use the nominal condition defined

in Model.Nominal property of each candidate controller as its initial state.

If you leave this parameter blank, the block uses the nominal values defined in the Model.Nominal
property of the explicitMPC objects. You can use this parameter to make the controller states
reflect the true plant environment at the start of your simulation to the best of your knowledge.

If custom state estimation is enabled, the block ignores Cell Array of Initial Controller States
parameter.

Programmatic Use
Block Parameter: x0s
Type: string, character vector, cell array of strings, cell array of character vectors
Default: ""

4 Blocks

4-80

General Tab

Measured disturbances — Add measured disturbance input port
on (default) | off

If your controller has measured disturbances, you must select this parameter to add the md output
port to the block.

Programmatic Use
Block Parameter: md_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "on"

External manipulated variable — Add external manipulated variable input port
off (default) | on

Select this parameter to add the ext.mv input port to the block.

Programmatic Use
Block Parameter: mv_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Status of piecewise affine function evaluation — Add evaluation status output port
off (default) | on

Select this parameter to add the status output port to the block.

Programmatic Use
Block Parameter: return_status_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Region number of evaluated piecewise affine function — Add region number output
port
off (default) | on

Select this parameter to add the region output port to the block.

Programmatic Use
Block Parameter: return_region_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Estimated controller states — Add estimated states output port
off (default) | on

Select this parameter to add the est.state output port to the block.

Programmatic Use
Block Parameter: return_state_multiple
Type: string, character vector

 Multiple Explicit MPC Controllers

4-81

Values: "off", "on"
Default: "off"

Use custom state estimation instead of using the built-in Kalman filter — Use
custom state estimate input port
off (default) | on

Select this parameter to remove the mo input port and add the x[k|k] input port.
Programmatic Use
Block Parameter: state_inport_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Others Tab

Block data type — Specify data type of manipulated variables
double (default) | single | data type expression

Specify the block data type of the manipulated variables as one of the following:

• double — Double-precision floating point
• single — Single-precision floating point

If you are implementing the block on a single-precision target, specify the output data type as
single.

• data type expression — An expression that evaluates to either double or single. For more
information see “Control Data Types of Signals” (Simulink).

Programmatic Use
Block Parameter: BlockDataType_multiple
Type: string, character vector
Values: "double", "single", data type expression
Default: "double"

Inherit sample time — Inherit block sample time from parent subsystem
off (default) | on

Select this parameter to inherit the sample time of the parent subsystem as the block sample time.
Doing so allows you to conditionally execute this block inside Function-Call Subsystem or Triggered
Subsystem blocks. For an example, see “Using MPC Controller Block Inside Function-Call and
Triggered Subsystems”.

Note You must execute Function-Call Subsystem or Triggered Subsystem blocks at the sample rate
of the controller. Otherwise, you can see unexpected results for two reasons.

• The first element of the MV rate vector (which is the difference between the current and the last
value of the manipulated variable) is normally weighted and constrained assuming that the last
MV value occurred in the past at the sample time specified in the MPC object, and when the block
is executed with a different sample rate, this assumption no longer holds.

• The built-in Kalman estimator uses the sample time specified in the MPC object to provide an
estimation of the current state to the MPC optimization problem, so when the block is executed
with a different sample time, the estimated state is no longer correct.

4 Blocks

4-82

If you clear this parameter (default), the sample time of the block is inherited from the controller
object.

To view the sample time of a block, in the Simulink model window, on the Debug tab, under
Information Overlays, select either colors or Text. For more information, see “View Sample Time
Information” (Simulink).

Programmatic Use
Block Parameter: SampleTimeInherited_multiple
Type: string, character vector
Values: "off", "on"
Default: "off"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
Explicit MPC Controller | Multiple MPC Controllers

Functions
mpc | mpcmove | mpcstate

Topics
“Gain-Scheduled MPC”
“Design Workflow for Explicit MPC”
“Simulation and Code Generation Using Simulink Coder”
“Simulation and Structured Text Generation Using Simulink PLC Coder”

Introduced in R2016b

 Multiple Explicit MPC Controllers

4-83

Nonlinear MPC Controller
Simulate nonlinear model predictive controllers
Library: Model Predictive Control Toolbox

Description
The Nonlinear MPC Controller block simulates a nonlinear model predictive controller. At each
control interval, the block computes optimal control moves by solving a nonlinear programming
problem. For more information on nonlinear MPC, see “Nonlinear MPC”.

To use this block, you must first create an nlmpc object in the MATLAB workspace.

Limitations
• None of the Nonlinear MPC Controller block parameters are tunable.

Ports
Input

Required Inputs

x — input
vector

Current prediction model states, specified as a vector signal of length Nx, where Nx is the number of
prediction model states. Since the nonlinear MPC controller does not perform state estimation, you
must either measure or estimate the current prediction model states at each control interval.

ref — Model output reference values
row vector | matrix

Plant output reference values, specified as a row vector signal or matrix signal.

To use the same reference values across the prediction horizon, connect ref to a row vector signal
with NY elements, where Ny is the number of output variables. Each element specifies the reference
for an output variable.

To vary the references over the prediction horizon (previewing) from time k+1 to time k+p, connect
ref to a matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the
prediction horizon. Each row contains the references for one prediction horizon step. If you specify
fewer than p rows, the final references are used for the remaining steps of the prediction horizon.

4 Blocks

4-84

last_mv — Control signals used in plant at previous control interval
vector

Control signals used in plant at previous control interval, specified as a vector signal of lengthNmv,
where Nmv is the number of manipulated variables.

Note Connect last_mv to the MV signals actually applied to the plant in the previous control
interval. Typically, these MV signals are the values generated by the controller, though this is not
always the case. For example, if your controller is offline and running in tracking mode; that is, the
controller output is not driving the plant, then feeding the actual control signal to last_mv can help
achieve bumpless transfer when the controller is switched back online.

Additional Inputs

md — input
row vector | matrix

If your controller prediction model has measured disturbances you must enable this port and connect
to it a row vector or matrix signal.

To use the same measured disturbance values across the prediction horizon, connect md to a row
vector signal with Nmd elements, where Nmd is the number of manipulated variables. Each element
specifies the value for a measured disturbance.

To vary the disturbances over the prediction horizon (previewing) from time k to time k+p, connect
md to a matrix signal with Nmd columns and up to p+1 rows. Here, k is the current time and p is the
prediction horizon. Each row contains the disturbances for one prediction horizon step. If you specify
fewer than p+1 rows, the final disturbances are used for the remaining steps of the prediction
horizon.

Dependencies

To enable this port, select the Measured disturbances parameter.

params — Optional parameters
bus

If your controller uses optional parameters in its prediction model, custom cost function, or custom
constraint functions, enable this input port, and connect a parameter bus signal with Np elements,
where Np is the number of parameters. For more information on creating a parameter bus signal, see
createParameterBus. The controller, passes these parameters to its model functions, cost function,
constraint functions, and Jacobian functions.

If your controller does not use optional parameters, you must disable params.

Dependencies

To enable this port, select the Model parameters parameter.

mv.target — Manipulated variable targets
vector

 Nonlinear MPC Controller

4-85

To specify manipulated variable targets, enable this input port, and connect a vector signal. To make
a given manipulated variable track its specified target value, you must also specify a nonzero tuning
weight for that manipulated variable.

The supplied mv.target values at run-time apply across the prediction horizon.

Dependencies

To enable this port, select the Targets for manipulated variables parameter.

Online Constraints

y.min — Minimum output variable constraints
vector | matrix

To specify run-time minimum output variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the OutputVariables.Min property of its
controller object.

To use the same bounds over the prediction horizon, connect y.min to a row vector signal with Ny
elements, where Ny is the number of outputs. Each element specifies the lower bound for an output
variable.

To vary the bounds over the prediction horizon from time k+1 to time k+p, connect y.min to a matrix
signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon.
Each row contains the bounds for one prediction horizon step. If you specify fewer than p rows, the
bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Lower OV limits parameter.

y.max — Maximum output variable constraints
vector | matrix

To specify run-time maximum output variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the OutputVariables.Min property of its
controller object.

To use the same bounds over the prediction horizon, connect y.max to a row vector signal with Ny
elements, where Ny is the number of outputs. Each element specifies the upper bound for an output
variable.

To vary the bounds over the prediction horizon from time k+1 to time k+p, connect y.max to a matrix
signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon.
Each row contains the bounds for one prediction horizon step. If you specify fewer than p rows, the
bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Upper OV limits parameter.

mv.min — Minimum manipulated variable constraints
vector | matrix

4 Blocks

4-86

To specify run-time minimum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the ManipulatedVariables.Min property of
its controller object.

To use the same bounds over the prediction horizon, connect mv.min to a row vector signal with Nmv
elements, where Nmv is the number of outputs. Each element specifies the lower bound for a
manipulated variable.

To vary the bounds over the prediction horizon from time k to time k+p-1, connect mv.min to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Lower MV limits parameter.

mv.max — Maximum manipulated variable constraints
vector | matrix

To specify run-time maximum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the ManipulatedVariables.Max property of
its controller object.

To use the same bounds over the prediction horizon, connect mv.max to a row vector signal with Nmv
elements, where Nmv is the number of outputs. Each element specifies the upper bound for a
manipulated variable.

To vary the bounds over the prediction horizon from time k to time k+p-1, connect mv.max to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Upper MV limits parameter.

dmv.min — Minimum manipulated variable rate constraints
vector | matrix

To specify run-time minimum manipulated variable rate constraints, enable this input port. If this port
is disabled, the block uses the lower bounds specified in the ManipulatedVariable.RateMin
property of its controller object. dmv.min bounds must be nonpositive.

To use the same bounds over the prediction horizon, connect dmv.min to a row vector signal with
Nmv elements, where Nmv is the number of outputs. Each element specifies the lower bound for a
manipulated variable rate of change.

To vary the bounds over the prediction horizon from time k to time k+p-1, connect dmv.min to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Lower MVRate limits parameter.

 Nonlinear MPC Controller

4-87

dmv.max — Maximum manipulated variable rate constraints
vector | matrix

To specify run-time maximum manipulated variable rate constraints, enable this input port. If this
port is disabled, the block uses the upper bounds specified in the
ManipulatedVariables.RateMax property of its controller object. dmv.max bounds must be
nonnegative.

To use the same bounds over the prediction horizon, connect dmv.max to a row vector signal with
Nmv elements, where Nmv is the number of outputs. Each element specifies the upper bound for a
manipulated variable rate of change.

To vary the bounds over the prediction horizon from time k to time k+p-1, connect dmv.max to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Upper MVRate limits parameter.

x.min — Minimum state constraints
vector | matrix

To specify run-time minimum state constraints, enable this input port. If this port is disabled, the
block uses the lower bounds specified in the States.Min property of its controller object.

To use the same bounds over the prediction horizon, connect x.min to a row vector signal with Nx
elements, where Nx is the number of outputs. Each element specifies the lower bound for a state.

To vary the bounds over the prediction horizon from time k+1 to time k+p, connect x.min to a matrix
signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon.
Each row contains the bounds for one prediction horizon step. If you specify fewer than p rows, the
bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Lower state limits parameter.

x.max — Maximum state constraints
vector | matrix

To specify run-time maximum state constraints, enable this input port. If this port is disabled, the
block uses the upper bounds specified in the States.Max property of its controller object.

To use the same bounds over the prediction horizon, connect x.max to a row vector signal with Nx
elements, where Nx is the number of outputs. Each element specifies the upper bound for a state.

To vary the bounds over the prediction horizon from time k+1 to time k+p, connect x.max to a matrix
signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon.
Each row contains the bounds for one prediction horizon step. If you specify fewer than p rows, the
bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Upper state limits parameter.

4 Blocks

4-88

Online Tuning Weights

y.wt — Output variable tuning weights
row vector | matrix

To specify run-time output variable tuning weights, enable this input port. If this port is disabled, the
block uses the tuning weights specified in the Weights.OutputVariables property of its controller
object. These tuning weights penalize deviations from output references.

If the MPC controller object uses constant output tuning weights over the prediction horizon, you can
specify only constant output tuning weights at runtime. Similarly, if the MPC controller object uses
output tuning weights that vary over the prediction horizon, you can specify only time-varying output
tuning weights at runtime

To use constant tuning weights over the prediction horizon, connect y.wt to a row vector signal with
Ny elements, where Ny is the number of outputs. Each element specifies a nonnegative tuning weight
for an output variable. For more information on specifying tuning weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, connect y.wt to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.

Dependencies

To enable this port, select the OV weights parameter.

mv.wt — Manipulated variable tuning weights
row vector | matrix

To specify run-time manipulated variable tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariables
property of its controller object. These tuning weights penalize deviations from MV targets.

To use the same tuning weights over the prediction horizon, connect mv.wt to a row vector signal
with Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect mv.wt to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.

Dependencies

To enable this port, select the MV weights parameter.

dmv.wt — Manipulated variable rate tuning weights
row vector | matrix

 Nonlinear MPC Controller

4-89

To specify run-time manipulated variable rate tuning weights, enable this input port. If this port is
disabled, the block uses the tuning weights specified in the Weights.ManipulatedVariablesRate
property of its controller object. These tuning weights penalize large changes in control moves.

To use the same tuning weights over the prediction horizon, connect dmv.wt to a row vector signal
with Nmv elements, where Nmv is the number of manipulated variables. Each element specifies a
nonnegative tuning weight for a manipulated variable rate. For more information on specifying tuning
weights, see “Tune Weights”.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, connect dmv.wt to
a matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the tuning weights for one prediction horizon step. If you specify fewer
than p rows, the tuning weights in the final row apply for the remainder of the prediction horizon. For
more information on varying weights over the prediction horizon, see “Setting Time-Varying Weights
and Constraints with MPC Designer”.
Dependencies

To enable this port, select the MVRate weights parameter.

ecr.wt — Slack variable tuning weight
scalar

To specify a run-time slack variable tuning weight, enable this input port and connect a scalar signal.
If this port is disabled, the block uses the tuning weight specified in the Weights.ECR property of its
controller object.

The slack variable tuning weight has no effect unless your controller object defines soft constraints
whose associated ECR values are nonzero. If there are soft constraints, increasing the ecr.wt value
makes these constraints relatively harder. The controller then places a higher priority on minimizing
the magnitude of the predicted worst-case constraint violation.
Dependencies

To enable this port, select the ECR weight parameter.

Initial Guesses

mv.init — Initial guesses for the optimal manipulated variable solutions
vector | matrix

To specify initial guesses for the optimal manipulated variable solutions, enable this input port. If this
port is disabled, the block uses the optimal control sequences calculated in the previous control
interval as initial guesses.

To use the same initial guesses over the prediction horizon, connect mv.init to a vector signal with
Nmv elements, where Nmv is the number of manipulated variables. Each element specifies the initial
guess for a manipulated variable.

To vary the initial guesses over the prediction horizon from time k to time k+p-1, connect mv.init to a
matrix signal with Nmv columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the initial guesses for one prediction horizon step. If you specify fewer
than p rows, the guesses in the final row apply for the remainder of the prediction horizon.
Dependencies

To enable this port, select the Initial guess parameter.

4 Blocks

4-90

x.init — Initial guesses for the optimal state variable solutions
vector | matrix

To specify initial guesses for the optimal state solutions, enable this input port. If this port is disabled,
the block uses the optimal state sequences calculated in the previous control interval as initial
guesses.

To use the same initial guesses over the prediction horizon, connect x.init to a vector signal with Nx
elements, where Nx is the number of states. Each element specifies the initial guess for a state.

To vary the initial guesses over the prediction horizon from time k to time k+p-1, connect x.init to a
matrix signal with Nx columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the initial guesses for one prediction horizon step. If you specify fewer
than p rows, the guesses in the final row apply for the remainder of the prediction horizon.
Dependencies

To enable this port, select the Initial guess parameter.

e.init — Initial guess for the slack variable at the solution
nonnegative scalar

To specify an initial guess for the slack variable at the solution, enable this input port and connect a
nonnegative scalar signal. If this port is disabled, the block uses an initial guess of 0.
Dependencies

To enable this port, select the Initial guess parameter.

Output

Required Output

mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, output as a column vector signal of length Nmv, where
Nmv is the number of manipulated variables.

If the solver converges to a local optimum solution (nlp.status is positive), then mv contains the
optimal solution.

If the solver reaches the maximum number of iterations without finding an optimal solution
(nlp.status is zero) and the Optimization.UseSuboptimalSolution property of the controller is:

• true, then mv contains the suboptimal solution
• false, then mv is the same as last_mv

If the solver fails (nlp.status is negative), then mv is the same as last_mv.

Additional Outputs

cost — Objective function cost
nonnegative scalar

Objective function cost, output as a nonnegative scalar signal. The cost quantifies the degree to
which the controller has achieved its objectives.

 Nonlinear MPC Controller

4-91

The cost value is only meaningful when the nlp.status output is nonnegative.

Dependencies

To enable this port, select the Optimal cost parameter.

slack — Slack variable
0 | nonnegative scalar

Slack variable, ε, used in constraint softening, output as 0 or a positive scalar value.

• ε = 0 — All soft constraints are satisfied over the entire prediction horizon.
• ε > 0 — At least one soft constraint is violated. When more than one constraint is violated, ε

represents the worst-case soft constraint violation (scaled by the ECR values for each constraint).

Dependencies

To enable this port, select the Slack variable parameter.

nlp.status — Optimization status
scalar

Optimization status, output as one of the following:

• Positive Integer — Solver converged to an optimal solution
• 0 — Maximum number of iterations reached without converging to an optimal solution
• Negative integer — Solver failed

Dependencies

To enable this port, select the Optimization status parameter.

Optimal Sequences

mv.seq — Optimal manipulated variable sequence
matrix

Optimal manipulated variable sequence, returned as a matrix signal with p+1 rows and Nmv columns,
where p is the prediction horizon and Nmv is the number of manipulated variables.

The first p rows of mv.seq contain the calculated optimal manipulated variable values from current
time k to time k+p-1. The first row of mv.seq contains the current manipulated variable values
(output mv). Since the controller does not calculate optimal control moves at time k+p, the final two
rows of mv.seq are identical.

Dependencies

To enable this port, select the Optimal control sequence parameter.

x.seq — Optimal prediction model state sequence
matrix

Optimal prediction model state sequence, returned as a matrix signal with p+1 rows and Nx columns,
where p is the prediction horizon and Nx is the number of states.

4 Blocks

4-92

The first row of x.seq contains the current estimated state values, either from the built-in state
estimator or from the custom state estimation block input x[k|k]. The next p rows of x.seq contain
the calculated optimal state values from time k+1 to time k+p.

Dependencies

To enable this port, select the Optimal state sequence parameter.

y.seq — Optimal output variable sequence
matrix

Optimal output variable sequence, returned as a matrix signal with p+1 rows and Ny columns, where
p is the prediction horizon and Ny is the number of output variables.

The first p rows of y.seq contain the calculated optimal output values from current time k to time k
+p-1. The first row of y.seq is computed based on the current estimated states and the current
measured disturbances (first row of input md). Since the controller does not calculate optimal output
values at time k+p, the final two rows of y.seq are identical.

Dependencies

To enable this port, select the Optimal output sequence parameter.

Parameters
Nonlinear MPC Controller — Controller object
nlmpc object name

You must provide an nlmpc object that defines a nonlinear MPC controller. To do so, enter the name
of an nlmpc object in the MATLAB workspace.

Programmatic Use
Block Parameter: nlmpcobj
Type: string, character vector
Default: ""

Use prediction model sample time — Flag for using the prediction model sample time
on (default) | off

Select this parameter to run the controller using the same sample time as its prediction model. To use
a different controller sample time, clear this parameter, and specify the sample time using the Make
block run at a different sample time parameter.

To limit the number of decision variables and improve computational efficiency, you can run the
controller with a sample time that is different from the prediction horizon. For example, consider the
case of a nonlinear MPC controller running at 10 Hz. If the plant and controller sample times match,
predicting plant behavior for ten seconds requires a prediction horizon of length 100, which produces
a large number of decision variables. To reduce the number of decision variables, you can use a plant
sample time of 1 second and a prediction horizon of length 10.

Programmatic Use
Block Parameter: UseObjectTs
Type: string, character vector
Values: "off", "on"
Default: "on"

 Nonlinear MPC Controller

4-93

Make block run at a different sample time — Controller sample time
positive finite scalar | -1

Specify this parameter to run the controller using a different sample time from its prediction model.
Setting this parameter to -1 allows the block to inherit the sample time from its parent subsystem.

Note The first element of the MV rate vector (which is the difference between the current and the
last value of the manipulated variable) is normally weighted and constrained assuming that the last
value of the MV occurred in the past at the sample time specified in the MPC object. When the block
is executed with a different sample rate, this assumption no longer holds, therefore, in this case, you
must make sure that the weights and constraints defined in the controller handle the first element of
the MV rate vector correctly.

Dependencies

To enable this parameter, clear the Use prediction model sample time parameter.

Programmatic Use
Block Parameter: TsControl
Type: string, character vector
Default: ""

Use MEX to speed up simulation — Flag for simulating controller use MEX function
off (default) | on

Select this parameter to simulate the controller using a MEX function generated using buildMEX.
Doing so reduces the simulation time of the controller. To specify the name of the MEX function, use
the Specify MEX function name parameter.

Programmatic Use
Block Parameter: UseMEX
Type: string, character vector
Values: "off", "on"
Default: "off"

Specify MEX function name — Controller MEX function name
string

Use this parameter to specify the name of the MEX function to use during simulation. To create the
MEX function, use the buildMEX function.

Dependencies

To enable this parameter, select the Use MEX to speed up simulation parameter.

Programmatic Use
Block Parameter: mexname
Type: string, character vector
Default: ""

General Tab

Measured disturbances — Add measured disturbance input port
off (default) | on

4 Blocks

4-94

If your controller has measured disturbances, you must select this parameter to add the md output
port to the block.

Programmatic Use
Block Parameter: md_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Targets for manipulated variables — Add manipulated variable target input port
off (default) | on

Select this parameter to add the mv.target input port to the block.

Programmatic Use
Block Parameter: mvtarget_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Model parameters — Add model parameters input port
off (default) | on

If your controller uses optional parameters, you must select this parameter to add the params output
port to the block.

For more information on creating a parameter bus signal, see createParameterBus.

Programmatic Use
Block Parameter: param_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal cost — Add optimal cost output port
off (default) | on

Select this parameter to add the cost output port to the block.

Programmatic Use
Block Parameter: cost_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal control sequence — Add optimal control sequence output port
off (default) | on

Select this parameter to add the mv.seq output port to the block.

Programmatic Use
Block Parameter: mvseq_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

 Nonlinear MPC Controller

4-95

Optimal state sequence — Add optimal state sequence output port
off (default) | on

Select this parameter to add the x.seq output port to the block.

Programmatic Use
Block Parameter: stateseq_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal output sequence — Add optimal output sequence output port
off (default) | on

Select this parameter to add the y.seq output port to the block.

Programmatic Use
Block Parameter: ovseq_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Slack variable — Add slack variable output port
off (default) | on

Select this parameter to add the slack output port to the block.

Programmatic Use
Block Parameter: slack_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimization status — Add optimization status output port
off (default) | on

Select this parameter to add the nlp.status output port to the block.

Programmatic Use
Block Parameter: status_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Online Features Tab

Lower OV limits — Add minimum OV constraint input port
off (default) | on

Select this parameter to add the ov.min input port to the block.

Programmatic Use
Block Parameter: ov_min
Type: string, character vector
Values: "off", "on"
Default: "off"

4 Blocks

4-96

Upper OV limits — Add maximum OV constraint input port
off (default) | on

Select this parameter to add the ov.max input port to the block.
Programmatic Use
Block Parameter: ov_max
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower MV limits — Add minimum MV constraint input port
off (default) | on

Select this parameter to add the mv.min input port to the block.
Programmatic Use
Block Parameter: mv_min
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper MV limits — Add maximum MV constraint input port
off (default) | on

Select this parameter to add the mv.max input port to the block.
Programmatic Use
Block Parameter: mv_max
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower MVRate limits — Add minimum MV rate constraint input port
off (default) | on

Select this parameter to add the dmv.min input port to the block.
Programmatic Use
Block Parameter: mvrate_min
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper MVRate limits — Add maximum MV rate constraint input port
off (default) | on

Select this parameter to add the dmv.max input port to the block.
Programmatic Use
Block Parameter: mvrate_max
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower state limits — Add minimum state constraint input port
off (default) | on

 Nonlinear MPC Controller

4-97

Select this parameter to add the x.min input port to the block.

Programmatic Use
Block Parameter: state_min
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper state limits — Add maximum state constraint input port
off (default) | on

Select this parameter to add the x.max input port to the block.

Programmatic Use
Block Parameter: state_max
Type: string, character vector
Values: "off", "on"
Default: "off"

OV weights — Add OV tuning weights input port
off (default) | on

Select this parameter to add the y.wt input port to the block.

Programmatic Use
Block Parameter: ov_weight
Type: string, character vector
Values: "off", "on"
Default: "off"

MV weights — Add MV tuning weights input port
off (default) | on

Select this parameter to add the mv.wt input port to the block.

Programmatic Use
Block Parameter: mv_weight
Type: string, character vector
Values: "off", "on"
Default: "off"

MVRate weights — Add MV rate tuning weights input port
off (default) | on

Select this parameter to add the dmv.wt input port to the block.

Programmatic Use
Block Parameter: mvrate_weight
Type: string, character vector
Values: "off", "on"
Default: "off"

ECR weight — Add ECR tuning weight input port
off (default) | on

Select this parameter to add the ecr.wt input port to the block.

4 Blocks

4-98

Programmatic Use
Block Parameter: ecr_weight
Type: string, character vector
Values: "off", "on"
Default: "off"

Initial guess — Add initial guess input ports
off (default) | on

Select this parameter to add the mv.init, x.init, and e.init input ports to the block.

Note By default, the Nonlinar MPC Controller block uses the calculated optimal manipulated
variable and state trajectories from one control interval as the initial guesses for the next control
interval.

Enable the initial guess ports only if it is necessary for your application.

Programmatic Use
Block Parameter: nlp_initialize
Type: string, character vector
Values: "off", "on"
Default: "off"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The Nonlinear MPC Controller block supports generating code only for nonlinear MPC controllers
that use the default fmincon solver with the SQP algorithm.

• Code generation for single-precision or fixed-point computations is not supported.
• When used for code generation, nonlinear MPC controllers do not support expressing prediction

model functions, stage cost functions or constraint functions as anonymous functions.
• If your controller uses optional parameters, you must also generate code for the Bus Creator block

connected to the params input port. To do so, place the Nonlinear MPC Controller and Bus
Creator blocks within a subsystem, and generate code for that subsystem.

• The Support non-finite numbers check box in the Interface section of the Code Generation
options, under the model Configuration Parameters dialog box, must be checked (default
option).

• When generating code using Embedded Coder®, the Support variable-size signals in the
Interface section of the Code Generation options, under the model Configuration Parameters
dialog box, must be checked. By default this check box is unchecked and you must check it before
generating code.

See Also
nlmpc | nlmpcmove | createParameterBus

 Nonlinear MPC Controller

4-99

Topics
“Nonlinear MPC”

Introduced in R2018b

4 Blocks

4-100

Multistage Nonlinear MPC Controller
Simulate multistage nonlinear model predictive controllers
Library: Model Predictive Control Toolbox

Description
The Multistage Nonlinear MPC Controller block simulates a multistage nonlinear model predictive
controller. At each control interval, the block computes optimal control moves by solving a nonlinear
programming problem in which different cost functions and constraints are defined for different
prediction steps (stages). For more information on nonlinear MPC, see “Nonlinear MPC”.

To use this block, you must first create an nlmpcMultistage object in the MATLAB workspace.

Limitations
• None of the Multistage Nonlinear MPC Controller block parameters are tunable.

Ports
Input

Required Inputs

x — input
vector

Current prediction model states, specified as a vector signal of length Nx, where Nx is the number of
prediction model states. Since the nonlinear MPC controller does not perform state estimation, you
must either measure or estimate the current prediction model states at each control interval.

last_mv — Control signals used in the plant at the previous control interval
vector

Control signals used in plant at previous control interval, specified as a vector signal of length Nmv,
where Nmv is the number of manipulated variables.

Note Connect last_mv to the MV signals actually applied to the plant in the previous control
interval. Typically, these MV signals are the values generated by the controller, though sometimes
they can come from a different source. For example, if your controller is offline and running in
tracking mode, (that is, the controller output is not driving the plant), then feeding the actual plant
input to last_mv can help achieve bumpless transfer when the controller is switched back online.

 Multistage Nonlinear MPC Controller

4-101

Additional Inputs

md — input
row vector | matrix

If your controller prediction model has measured disturbances you must enable this port and connect
to it a row vector or matrix signal.

To use the same measured disturbance values across the prediction horizon, connect md to a row
vector signal with Nmd elements, where Nmd is the number of manipulated variables. Each element
specifies the value for a measured disturbance.

To vary the disturbances over the prediction horizon (previewing) from time k to time k+p, connect
md to a matrix signal with Nmd columns and up to p+1 rows. Here, k is the current time and p is the
prediction horizon. Each row contains the disturbances for one prediction horizon step. If you specify
fewer than p+1 rows, the final disturbances are used for the remaining steps of the prediction
horizon.

Dependencies

To enable this port, select the Measured disturbances parameter.

state.param — Optional parameters
vector

If your controller uses optional parameters in its prediction model, enable this input port, and
connect a vector signal with Npm elements, where Npm is the number of state parameters (equal to the
Model.ParameterLength property of the nlmpcMultistage controller object). The controller
passes these parameters to its model state transition and state Jacobian functions.

If your controller does not use optional parameters, you must disable the state.param port.

Dependencies

To enable this port, select the StateFcn parameters parameter.

stage.param — Optional parameters
vector

If your controller uses optional parameters in any stage cost or constraint function, enable this input
port, and connect a vector signal with Npv elements, where Npv is the total number of parameters for
all stage functions, and is equal to sum(Stages.ParameterLength). The parameters for all stages
are stacked in the parameter vector as follows.

[parameter vector for stage 1;
 parameter vector for stage 2;
 ...
 parameter vector for stage p+1;
]

At each stage, the controller passes the relevant parameter vector to the stage cost and constraint
functions active at that stage.

If your controller does not use optional parameters, you must disable the stage.param port. For
more information, see nlmpcMultistage and nlmpcmove.

4 Blocks

4-102

Dependencies

To enable this port, select the Stacked stage parameters parameter.

Online Constraints

mv.min — Minimum manipulated variable constraints
vector | matrix

To specify run-time minimum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the lower bounds specified in the ManipulatedVariables.Min property of
its controller object.

To use the same bounds over the prediction horizon, connect mv.min to a row vector signal with Nmv
elements, where Nmv is the number of outputs. Each element specifies the lower bound for a
manipulated variable.

To vary the bounds over the prediction horizon from time k to time k+p–1, connect mv.min to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Lower MV limits parameter.

mv.max — Maximum manipulated variable constraints
vector | matrix

To specify run-time maximum manipulated variable constraints, enable this input port. If this port is
disabled, the block uses the upper bounds specified in the ManipulatedVariables.Max property of
its controller object.

To use the same bounds over the prediction horizon, connect mv.max to a row vector signal with Nmv
elements, where Nmv is the number of outputs. Each element specifies the upper bound for a
manipulated variable.

To vary the bounds over the prediction horizon from time k to time k+p–1, connect mv.max to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Upper MV limits parameter.

dmv.min — Minimum manipulated variable rate constraints
vector | matrix

To specify run-time minimum manipulated variable rate constraints, enable this input port. If this port
is disabled, the block uses the lower bounds specified in the ManipulatedVariable.RateMin
property of its controller object. dmv.min bounds must be nonpositive.

To use the same bounds over the prediction horizon, connect dmv.min to a row vector signal with
Nmv elements, where Nmv is the number of outputs. Each element specifies the lower bound for a
manipulated variable rate of change.

 Multistage Nonlinear MPC Controller

4-103

To vary the bounds over the prediction horizon from time k to time k+p–1, connect dmv.min to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Lower MVRate limits parameter.

dmv.max — Maximum manipulated variable rate constraints
vector | matrix

To specify run-time maximum manipulated variable rate constraints, enable this input port. If this
port is disabled, the block uses the upper bounds specified in the
ManipulatedVariables.RateMax property of its controller object. dmv.max bounds must be
nonnegative.

To use the same bounds over the prediction horizon, connect dmv.max to a row vector signal with
Nmv elements, where Nmv is the number of outputs. Each element specifies the upper bound for a
manipulated variable rate of change.

To vary the bounds over the prediction horizon from time k to time k+p–1, connect dmv.max to a
matrix signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction
horizon. Each row contains the bounds for one prediction horizon step. If you specify fewer than p
rows, the bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Upper MVRate limits parameter.

x.min — Minimum state constraints
vector | matrix

To specify run-time minimum state constraints, enable this input port. If this port is disabled, the
block uses the lower bounds specified in the States.Min property of its controller object.

To use the same bounds over the prediction horizon, connect x.min to a row vector signal with Nx
elements, where Nx is the number of outputs. Each element specifies the lower bound for a state.

To vary the bounds over the prediction horizon from time k+1 to time k+p, connect x.min to a matrix
signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon.
Each row contains the bounds for one prediction horizon step. If you specify fewer than p rows, the
bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Lower state limits parameter.

x.max — Maximum state constraints
vector | matrix

To specify run-time maximum state constraints, enable this input port. If this port is disabled, the
block uses the upper bounds specified in the States.Max property of its controller object.

To use the same bounds over the prediction horizon, connect x.max to a row vector signal with Nx
elements, where Nx is the number of outputs. Each element specifies the upper bound for a state.

4 Blocks

4-104

To vary the bounds over the prediction horizon from time k+1 to time k+p, connect x.max to a matrix
signal with Ny columns and up to p rows. Here, k is the current time and p is the prediction horizon.
Each row contains the bounds for one prediction horizon step. If you specify fewer than p rows, the
bounds in the final row apply for the remainder of the prediction horizon.

Dependencies

To enable this port, select the Upper state limits parameter.

Others

x.terminal — Terminal state
vector

Terminal state, specified as a vector signal of length Nx. To specify desired terminal state constraints,
enable this input port. To specify desired terminal states at run-time via this input port, you must
specify finite values in the TerminalState field of the Model property of the nlmpcMultistage
object that is passed as a parameter to the block. Specify inf for the states that you do not need to
constrain to a terminal value. At run time, the block ignores any values in the input signal that
correspond to inf values in the object. If you do not specify any terminal value condition in the
nlmpcMultistage object, the signal at this input port is ignored at runtime.

If this port is not enabled the terminal state constraint (if present) does not change at run time.

Dependencies

To enable this port, select the Terminal state parameter.

z0 — Initial guesses for the decision variables vector
vector

To specify initial guesses for the decision variable vector, enable this input port. If this port is
disabled, the block uses the decision variable sequences calculated in the previous control interval as
initial guesses. Good initial guesses are important since they help the solver to converge to a solution
faster.

z0 is a column vector of length equal to the sum of the lengths of all the decision variable vectors for
each stage. The initial guesses must be stacked as follows.

[state vector guess for stage 1;
 manipulated variable vector guess for stage 1;
 manipulated variable vector rate guess for stage 1; % if used
 slack variable vector guess for stage 1; % if used
 state vector guess for stage 2;
 manipulated variable vector guess for stage 2;
 manipulated variable vector rate guess for stage 2; % if used
 slack variable vector guess for stage 2; % if used
 ...
 state vector guess for stage p;
 manipulated variable vector guess for stage p;
 manipulated variable vector rate guess for stage p; % if used
 slack variable vector guess for stage p; % if used
 state vector guess for stage p+1;
 slack variable vector guess for stage p+1; % if used
]

For more information, see nlmpcMultistage and nlmpcmove.

 Multistage Nonlinear MPC Controller

4-105

Dependencies

To enable this port, select the Initial guess parameter.

Output

Required Output

mv — Optimal manipulated variable control action
column vector

Optimal manipulated variable control action, output as a column vector signal of length Nmv, where
Nmv is the number of manipulated variables.

If the solver converges to a local optimum solution (nlp.status is positive), then mv contains the
optimal solution.

If the solver reaches the maximum number of iterations without finding an optimal solution
(nlp.status is zero) and the Optimization.UseSuboptimalSolution property of the controller is
true, then mv contains the suboptimal solution, otherwise, mv is the same as last_mv.

If the solver fails (nlp.status is negative), then mv is the same as last_mv.

Additional Outputs

cost — Objective function cost
nonnegative scalar

Objective function cost, output as a nonnegative scalar signal. The cost quantifies the degree to
which the controller has achieved its objectives.

The cost value is meaningful only when the nlp.status output is nonnegative.

Dependencies

To enable this port, select the Optimal cost parameter.

slack — Stacked slack variables vector
nonnegative vector

Stacked slack variables vector, used in constraint softening. If all elements are zero, then all soft
constraints are satisfied over the entire prediction horizon. If any element is greater than zero, then
at least one soft constraint is violated.

The slack variable vector for all stages are stacked as follows.

[slack variable vector for stage 1; % if used
 slack variable vector for stage 2; % if used
 ...
 slack variable vector for stage p+1; % if used
]

nlp.status — Optimization status
scalar

Optimization status, output as one of the following:

4 Blocks

4-106

• Positive Integer — Solver converged to an optimal solution
• 0 — Maximum number of iterations reached without converging to an optimal solution
• Negative integer — Solver failed

Dependencies

To enable this port, select the Optimization status parameter.

Optimal Sequences

mv.seq — Optimal manipulated variable sequence
matrix

Optimal manipulated variable sequence, returned as a matrix signal with p+1 rows and Nmv columns,
where p is the prediction horizon and Nmv is the number of manipulated variables.

The first p rows of mv.seq contain the calculated optimal manipulated variable values from current
time k to time k+p-1. The first row of mv.seq contains the current manipulated variable values
(output mv). Since the controller does not calculate optimal control moves at time k+p, the final two
rows of mv.seq are identical.

Dependencies

To enable this port, select the Optimal control sequence parameter.

x.seq — Optimal prediction model state sequence
matrix

Optimal prediction model state sequence, returned as a matrix signal with p+1 rows and Nx columns,
where p is the prediction horizon and Nx is the number of states.

The first row of x.seq contains the current estimated state values, either from the built-in state
estimator or from the custom state estimation block input x[k|k]. The next p rows of x.seq contain
the calculated optimal state values from time k+1 to time k+p.

Dependencies

To enable this port, select the Optimal state sequence parameter.

Parameters
Multistage Nonlinear MPC Controller — Controller object
nlmpcMultistage object name

You must provide an nlmpcMultistage object that defines a nonlinear MPC controller. To do so,
enter the name of an nlmpc object in the MATLAB workspace.

Programmatic Use
Block Parameter: nlmpcobj
Type: string, character vector
Default: ""

Use prediction model sample time — Flag for using the prediction model sample time
on (default) | off

 Multistage Nonlinear MPC Controller

4-107

Select this parameter to run the controller using the same sample time as its prediction model. To use
a different controller sample time, clear this parameter, and specify the sample time using the Make
block run at a different sample time parameter.

To limit the number of decision variables and improve computational efficiency, you can run the
controller with a sample time that is different from the prediction horizon. For example, consider the
case of a nonlinear MPC controller running at 10 Hz. If the plant and controller sample times match,
predicting plant behavior for ten seconds requires a prediction horizon of length 100, which produces
a large number of decision variables. To reduce the number of decision variables, you can use a plant
sample time of 1 second and a prediction horizon of length 10.
Programmatic Use
Block Parameter: UseObjectTs
Type: string, character vector
Values: "off", "on"
Default: "on"

Make block run at a different sample time — Controller sample time
positive finite scalar | -1

Specify this parameter to run the controller using a different sample time from its prediction model.
Setting this parameter to -1 allows the block to inherit the sample time from its parent subsystem.

Note The first element of the MV rate vector (which is the difference between the current and the
last value of the manipulated variable) is normally weighted and constrained assuming that the last
value of the MV occurred in the past at the sample time specified in the MPC object. When the block
is executed with a different sample rate, this assumption no longer holds, therefore, in this case, you
must make sure that the weights and constraints defined in the controller handle the first element of
the MV rate vector correctly.

Dependencies

To enable this parameter, clear the Use prediction model sample time parameter.
Programmatic Use
Block Parameter: TsControl
Type: string, character vector
Default: ""

Use MEX to speed up simulation — Flag for simulating controller use MEX function
off (default) | on

Select this parameter to simulate the controller using a MEX function generated using buildMEX.
Doing so reduces the simulation time of the controller. To specify the name of the MEX function, use
the Specify MEX function name parameter.
Programmatic Use
Block Parameter: UseMEX
Type: string, character vector
Values: "off", "on"
Default: "off"

Specify MEX function name — Controller MEX function name
string

4 Blocks

4-108

Use this parameter to specify the name of the MEX function to use during simulation. To create the
MEX function, use the buildMEX function.

Dependencies

To enable this parameter, select the Use MEX to speed up simulation parameter.

Programmatic Use
Block Parameter: mexname
Type: string, character vector
Default: ""

General Tab

Measured disturbances — Add measured disturbance input port
off (default) | on

If your controller has measured disturbances, you must select this parameter to add the md output
port to the block.

Programmatic Use
Block Parameter: md_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

StateFcn parameter — Add state function parameters input port
off (default) | on

If your prediction model uses optional parameters, you must select this parameter to add the
state.param input port to the block.

Programmatic Use
Block Parameter: stateparam_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Stacked stage parameters — Add stage functions parameter input port
off (default) | on

If your cost or constraint functions use parameters at any stage, you must select this parameter to
add the stage.param input port to the block.

Programmatic Use
Block Parameter: stageparam_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal cost — Add optimal cost output port
off (default) | on

Select this parameter to add the cost output port to the block.

 Multistage Nonlinear MPC Controller

4-109

Programmatic Use
Block Parameter: cost_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal control sequence — Add optimal control sequence output port
off (default) | on

Select this parameter to add the mv.seq output port to the block.

Programmatic Use
Block Parameter: mvseq_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimal state sequence — Add optimal state sequence output port
off (default) | on

Select this parameter to add the x.seq output port to the block.

Programmatic Use
Block Parameter: stateseq_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Slack variable — Add slack variable output port
off (default) | on

Select this parameter to add the slack output port to the block.

Programmatic Use
Block Parameter: slack_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Optimization status — Add optimization status output port
off (default) | on

Select this parameter to add the nlp.status output port to the block.

Programmatic Use
Block Parameter: status_enabled
Type: string, character vector
Values: "off", "on"
Default: "off"

Online Features Tab

Lower MV limits — Add minimum MV constraint input port
off (default) | on

Select this parameter to add the mv.min input port to the block.

4 Blocks

4-110

Programmatic Use
Block Parameter: mv_min
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper MV limits — Add maximum MV constraint input port
off (default) | on

Select this parameter to add the mv.max input port to the block.

Programmatic Use
Block Parameter: mv_max
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower MVRate limits — Add minimum MV rate constraint input port
off (default) | on

Select this parameter to add the dmv.min input port to the block.

Programmatic Use
Block Parameter: mvrate_min
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper MVRate limits — Add maximum MV rate constraint input port
off (default) | on

Select this parameter to add the dmv.max input port to the block.

Programmatic Use
Block Parameter: mvrate_max
Type: string, character vector
Values: "off", "on"
Default: "off"

Lower state limits — Add minimum state constraint input port
off (default) | on

Select this parameter to add the x.min input port to the block.

Programmatic Use
Block Parameter: state_min
Type: string, character vector
Values: "off", "on"
Default: "off"

Upper state limits — Add maximum state constraint input port
off (default) | on

Select this parameter to add the x.max input port to the block.

 Multistage Nonlinear MPC Controller

4-111

Programmatic Use
Block Parameter: state_max
Type: string, character vector
Values: "off", "on"
Default: "off"

Terminal state — Terminal State
off (default) | on

Select this parameter to add the x.terminal input port to the block.

Programmatic Use
Block Parameter: terminal_state
Type: string, character vector
Values: "off", "on"
Default: "off"

Initial guess — Add initial guess input port
off (default) | on

Select this parameter to add the z0 input port to the block.

Note By default, the Nonlinar MPC Controller block uses the calculated optimal states, manipulated
variables, and slack variables from one control interval as initial guesses for the next control interval.

Enable the initial guess port only if you need it for your application.

Programmatic Use
Block Parameter: nlp_initialize
Type: string, character vector
Values: "off", "on"
Default: "off"

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

Usage notes and limitations:

• The Multistage Nonlinear MPC Controller block supports generating code only for multistage
nonlinear MPC controllers that use the default fmincon solver with the SQP algorithm.

• Code generation for single-precision or fixed-point computations is not supported.
• When used for code generation, nonlinear MPC controllers do not support expressing prediction

model functions, stage cost functions or constraint functions as anonymous functions.
• The Support non-finite numbers check box in the Interface section of the Code Generation

options, under the model Configuration Parameters dialog box, must be checked (default
option).

• When generating code using Embedded Coder, the Support variable-size signals in the
Interface section of the Code Generation options, under the model Configuration Parameters

4 Blocks

4-112

dialog box, must be checked. By default this check box is unchecked and you must check it before
generating code.

See Also
nlmpcMultistage | nlmpcmove

Topics
“Nonlinear MPC”

Introduced in R2021a

 Multistage Nonlinear MPC Controller

4-113

Adaptive Cruise Control System
Simulate adaptive cruise control using model predictive controller
Library: Model Predictive Control Toolbox / Automated Driving

Description
The Adaptive Cruise Control System block simulates an adaptive cruise control (ACC) system that
tracks a set velocity and maintains a safe distance from a lead vehicle by adjusting the longitudinal
acceleration of an ego vehicle. The block computes optimal control actions while satisfying safe
distance, velocity, and acceleration constraints using model predictive control (MPC).

To customize your controller, for example to use advanced MPC features or modify controller initial
conditions, click Create ACC subsystem.

Ports
Input

Set velocity — Ego vehicle velocity setpoint
nonnegative scalar

Ego vehicle velocity setpoint in m/s. When there is no lead vehicle, the controller tracks this velocity.

Time gap — Safe time gap
nonnegative scalar

4 Blocks

4-114

Safe time gap in seconds between the lead vehicle and the ego vehicle. This time gap is used to
calculate the minimum safe following distance constraint. For more information, see “Safe Following
Distance” on page 4-120.

Longitudinal velocity — Ego vehicle velocity
nonnegative scalar

Ego vehicle velocity in m/s.

Relative distance — Distance between lead vehicle and ego vehicle
positive scalar

Distance in meters between lead vehicle and ego vehicle. To calculate this signal, subtract the ego
vehicle position from the lead vehicle position.

Relative velocity — Velocity difference between lead vehicle and ego vehicle
scalar

Velocity difference in meters per second between lead vehicle and ego vehicle. To calculate this
signal, subtract the ego vehicle velocity from the lead vehicle velocity.

Minimum longitudinal acceleration — Minimum ego vehicle acceleration
negative scalar

Minimum ego vehicle longitudinal acceleration constraint in m/s2. Use this input port when the
minimum acceleration varies at run time.

Dependencies

To enable this port, select Use external source for the Minimum longitudinal acceleration
parameter.

Maximum longitudinal acceleration — Maximum ego vehicle acceleration
positive scalar

Maximum ego vehicle longitudinal acceleration constraint in m/s2. Use this input port when the
maximum acceleration varies at run time.

Dependencies

To enable this port, select Use external source for the Maximum longitudinal acceleration
parameter.

Enable optimization — Controller optimization enable signal
scalar

Controller optimization enable signal. When this signal is:

• Nonzero, the controller performs optimization calculations and generates a Longitudinal
acceleration control signal.

• Zero, the controller does not perform optimization calculations. In this case, the Longitudinal
acceleration output signal remains at the value it had when the optimization was disabled. The
controller continues to update its internal state estimates.

 Adaptive Cruise Control System

4-115

Dependencies

To enable this port, select the Use external signal to enable or disable optimization parameter.

External control signal — Longitudinal acceleration applied to ego vehicle
scalar

Actual longitudinal acceleration in m/s2 applied to the ego vehicle. The controller uses this signal to
estimate the ego vehicle model states. Use this input port when the control signal applied to the ego
vehicle does not match the optimal control signal computed by the model predictive controller. This
mismatch can occur when, for example:

• The Adaptive Cruise Control System is not the active controller. Maintaining an accurate state
estimate when the controller is not active prevents bumps in the control signal when the
controller becomes active.

• The acceleration actuator fails and does not provide the correct control signal to the ego vehicle.

Dependencies

To enable this port, select the Use external control signal for bumpless transfer between ACC
and other controllers parameter.

Output

Longitudinal acceleration — Acceleration control signal
scalar

Acceleration control signal in m/s2 generated by the controller.

Parameters
Parameters Tab

Ego Vehicle Model

Linear model from longitudinal acceleration to longitudinal velocity — Ego
vehicle model
tf(1,[0.5,1,0]) (default) | LTI model | linear System Identification Toolbox model

The linear model from the ego vehicle longitudinal acceleration to its longitudinal velocity, specified
as an LTI model or a linear System Identification Toolbox model. The controller creates its internal
predictive model by augmenting the ego vehicle dynamic model.

Programmatic Use
Block Parameter: EgoModel
Type: string, character vector
Default: "tf(1,[0.5,1,0])"

Initial condition for longitudinal velocity — Initial velocity of the ego vehicle
model
20 (default) | nonnegative scalar

Initial velocity in m/s of the ego vehicle model, which can differ from the actual ego vehicle initial
velocity.

4 Blocks

4-116

This value is used to configure the initial conditions of the model predictive controller. For more
information, see “Initial Conditions” on page 4-120.
Programmatic Use
Block Parameter: InitialEgoVelocity
Type: string, character vector
Default: "20"

Default spacing — Minimum spacing to lead vehicle
10 (default) | nonnegative scalar

Minimum spacing in meters between the lead vehicle and the ego vehicle. This value corresponds to
the target relative distance between the ego and lead vehicles when the ego vehicle velocity is zero.

This value is used to calculate the:

• Minimum safe following distance. For more information, see “Safe Following Distance” on page 4-
120.

• Controller initial conditions. For more information, see “Initial Conditions” on page 4-120.

Programmatic Use
Block Parameter: DefaultSpacing
Type: string, character vector
Default: "10"

Maximum velocity — Maximum longitudinal velocity
50 (default) | positive scalar

Maximum ego vehicle longitudinal velocity in m/s.
Programmatic Use
Block Parameter: MaxVelocity
Type: string, character vector
Default: "50"

Adaptive Cruise Controller Constraints

Minimum longitudinal acceleration — Minimum ego vehicle acceleration
-3 (default) | negative scalar

Minimum ego vehicle longitudinal acceleration constraint in m/s2.

If the minimum acceleration varies over time, add the Minimum longitudinal acceleration input
port to the block by selecting Use external source.
Programmatic Use
Block Parameter: MinAcceleration
Type: string, character vector
Default: "-3"

Maximum longitudinal acceleration — Maximum ego vehicle acceleration
2 (default) | nonnegative scalar

Maximum ego vehicle longitudinal acceleration constraint in m/s2.

If the maximum acceleration varies over time, add the Maximum longitudinal acceleration input
port to the block by selecting Use external source.

 Adaptive Cruise Control System

4-117

Programmatic Use
Block Parameter: MaxAcceleration
Type: string, character vector
Default: "2"

Model Predictive Controller Settings

Sample time — Controller sample time
0.1 (default) | positive scalar

Controller sample time in seconds.

Programmatic Use
Block Parameter: Ts
Type: string, character vector
Default: "0.1"

Prediction horizon — Controller prediction horizon
10 (default) | positive integer

Controller prediction horizon steps. The controller prediction time is the product of the sample time
and the prediction horizon.

Programmatic Use
Block Parameter: PredictionHorizon
Type: string, character vector
Default: "30"

Controller behavior — Closed-loop controller performance
0.5 (default) | scalar between 0 and 1

Closed-loop controller performance. The default parameter value provides a balanced controller
design. Specifying a:

• Smaller value produces a more robust controller with smoother control actions.
• Larger value produces a more aggressive controller with a faster response time.

When you modify this parameter, the change is applied to the controller immediately.

Programmatic Use
Block Parameter: ControllerBehavior
Type: string, character vector
Default: "0.5"

Block Tab

Use suboptimal solution — Apply suboptimal solution after specified number of
iterations
off (default) | on

Configure the controller to apply a suboptimal solution after a specified maximum number of
iterations, which guarantees the worst-case execution time for your controller.

For more information, see “Suboptimal QP Solution”.

4 Blocks

4-118

Dependencies

After selecting this parameter, specify the Maximum iteration number parameter.

Programmatic Use
Block Parameter: suboptimal
Type: string, character vector
Default: "off"

Maximum iteration number — Maximum optimization iterations
10 (default) | positive integer

Maximum number of controller optimization iterations.

Dependencies

To enable this parameter, select the Use suboptimal solution parameter.

Programmatic Use
Block Parameter: maxiter
Type: string, character vector
Default: "10"

Use external signal to enable or disable optimization — Add port for enabling
optimization
off (default) | on

To add the Enable optimization input port to the block, select this parameter.

Programmatic Use
Block Parameter: optmode
Type: string, character vector
Default: "off"

Use external signal for bumpless transfer between ACC and other controllers —
Add external control signal input port
off (default) | on

Select this parameter to add the External control signal input port to the block.

Programmatic Use
Block Parameter: trackmode
Type: string, character vector
Default: "off"

Create ACC subsystem — Create custom controller
button

Generate a custom ACC subsystem, which you can modify for your application. The configuration data
for the custom controller is exported to the MATLAB workspace as a structure.

You can modify the custom controller subsystem to:

• Modify default MPC settings or use advanced MPC features.
• Modify the default controller initial conditions.
• Use different application settings, such as a custom safe following distance definition.

 Adaptive Cruise Control System

4-119

Algorithms
Safe Following Distance

By default, the model predictive controller computes the safe following distance constraint; that is,
the minimum relative distance between the lead and ego vehicle, as:

DR = DS + GT * VE

Here:

• DS is the Default spacing parameter.
• GT is the Time gap input signal.
• VE is the Longitudinal velocity input signal.

To define a different safe following distance constraint, create a custom cruise control system by, on
the Block tab, clicking Create ACC subsystem.

Initial Conditions

By default, the model predictive controller assumes the following initial conditions:

• Longitudinal velocity of both the ego vehicle and the lead vehicle equal the Initial condition for
longitudinal velocity parameter value.

• Ego vehicle longitudinal acceleration is zero.
• Relative distance between the lead vehicle and ego vehicle is:

DR = DS + GT * VE

Here:

• DS is the Default spacing parameter.
• GT is the time gap and is assumed to be 1.4.
• VE is the Initial longitudinal velocity parameter.

If the initial conditions in your model do not match these conditions, the Longitudinal acceleration
output can exhibit an initial bump at the start of the simulation.

To modify the controller initial conditions to match your simulation, create a custom cruise control
system by, on the Block tab, clicking Create ACC subsystem.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

4 Blocks

4-120

See Also
Blocks
MPC Controller | Path Following Control System | Lane Keeping Assist System

Introduced in R2018a

 Adaptive Cruise Control System

4-121

Lane Keeping Assist System
Simulate lane-keeping assistance using adaptive model predictive controller
Library: Model Predictive Control Toolbox / Automated Driving

Description
The Lane Keeping Assist System block simulates a lane keeping assist (LKA) system that keeps an ego
vehicle traveling along the center of a straight or curved road by adjusting the front steering angle.
The controller reduces the lateral deviation and relative yaw angle of the ego vehicle with respect to
the lane centerline. The block computes optimal control actions while satisfying steering angle
constraints using adaptive model predictive control (MPC).

To customize your controller, for example to use advanced MPC features or modify controller initial
conditions, click Create LKA subsystem.

Ports
Input

Curvature — Road curvature
scalar

Road curvature, specified as 1/R, where R is the radius of the curve in meters.

4 Blocks

4-122

The road curvature is:

• Positive when the road curves toward the positive Y axis of the global coordinate system.
• Negative when the road curves toward the negative Y axis of the global coordinate system.
• Zero for a straight road.

The controller models the road curvature as a measured disturbance with previewing. You can specify
the curvature as a:

• Scalar signal — Specify the curvature for the current control interval. The controller uses this
curvature value across the prediction horizon.

• Vector signal with length less than or equal to the Prediction Horizon — Specify the current and
predicted curvature values across the prediction horizon. If the length of the vector is less than
the prediction horizon, then the controller uses the final curvature value in the vector for the
remainder of the prediction horizon.

Longitudinal velocity — Ego vehicle velocity
nonnegative scalar

Ego vehicle velocity in m/s.

Lateral deviation — Ego vehicle lateral deviation
scalar

Ego vehicle lateral deviation in meters from the centerline of the lane. The lateral deviation e1 is
positive when the ego vehicle is to the right of the centerline and negative when the ego vehicle is to
the left of the centerline.

Relative yaw angle — Angle from lane centerline
scalar

Ego vehicle longitudinal axis angle in radians from the centerline of the lane, defined as:

e2 = θe− θc

Here, θe is the ego vehicle angle and θc is the centerline angle, with both angles defined in the global
coordinate frame.

Minimum steering angle — Minimum front steering angle
scalar

Minimum front steering angle constraint in radians. Use this input port when the minimum steering
angle varies at run time.

Dependencies

To enable this port, select Use external source for the Minimum steering angle parameter.

Maximum steering angle — Maximum front steering angle
scalar

Maximum front steering angle constraint in radians. Use this input port when the maximum steering
angle varies at run time.

 Lane Keeping Assist System

4-123

Dependencies

To enable this port, select Use external source for the Maximum steering angle parameter.

Enable optimization — Controller optimization enable signal
scalar

Controller optimization enable signal. When this signal is:

• Nonzero, the controller performs optimization calculations and generates a Steering angle
control signal.

• Zero, the controller does not perform optimization calculations. In this case, the Steering angle
output signal remains at the value it had when the optimization was disabled. The controller
continues to update its internal state estimates.

Dependencies

To enable this port, select the Use external signal to enable or disable optimization parameter.

External control signal — Steering angle applied to ego vehicle
scalar

Actual steering angle in radians applied to the ego vehicle. The controller uses this signal to estimate
the ego vehicle model states. Use this input port when the control signal applied to the ego vehicle
does not match the optimal control signal computed by the model predictive controller. This
mismatch can occur when, for example:

• The Lane Keeping Assist System is not the active controller. Maintaining an accurate state
estimate when the controller is not active prevents bumps in the control signal when the
controller becomes active.

• The steering actuator fails and does not provide the correct control signal to the ego vehicle.

Dependencies

To enable this port, select the Use external control signal for bumpless transfer between PFC
and other controllers parameter.

Vehicle dynamics matrix A — State matrix of ego vehicle predictive model
square matrix

State matrix of ego vehicle predictive model. The number of rows in the state matrix corresponds to
the number of states in the predictive model. This matrix must be square.

The ego vehicle predictive model defined by Vehicle dynamics matrix A, Vehicle dynamics matrix
B, and Vehicle dynamics matrix C must be minimal.

Dependencies

To enable this port, select the Use vehicle model parameter.

Vehicle dynamics matrix B — Input-to-state matrix of ego vehicle predictive model
column vector

Input-to-state matrix of ego vehicle predictive model. The number of rows in this signal must match
the number of rows in Vehicle dynamics matrix A.

4 Blocks

4-124

The ego vehicle predictive model defined by Vehicle dynamics matrix A, Vehicle dynamics matrix
B, and Vehicle dynamics matrix C must be minimal.

Dependencies

To enable this port, select the Use vehicle model parameter.

Vehicle dynamics matrix C — State-to-output matrix of ego vehicle predictive model
matrix with two rows

State-to-output matrix of ego vehicle predictive model. The number of columns in this signal must
match the number of rows in Vehicle dynamics matrix A.

The ego vehicle predictive model defined by Vehicle dynamics matrix A, Vehicle dynamics matrix
B, and Vehicle dynamics matrix C must be minimal.

Dependencies

To enable this port, select the Use vehicle model parameter.

Output

Steering angle — Front steering angle control signal
scalar

Front steering angle control signal in radians generated by the controller. The front steering angle is
the angle of the front tires from the longitudinal axis of the vehicle. The steering angle is positive
towards the positive lateral axis of the ego vehicle.

Parameters
Parameters Tab

Ego Vehicle

Use vehicle parameters — Define ego vehicle model using vehicle properties
on (default) | off

Select this parameter to define the ego vehicle model used by the MPC controller by specifying
properties of the ego vehicle. The ego vehicle model is the linear model from the front steering angle
to the lateral velocity and yaw angle rate. For more information, see “Ego Vehicle Predictive Model”
on page 4-132.

To define the vehicle model, specify the following block parameters:

• Total mass
• Yaw moment of inertia
• Longitudinal distance from center of gravity to front tires
• Longitudinal distance from center of gravity to rear tires
• Cornering stiffness of front tires
• Cornering stiffness of rear tires

For more information on the ego vehicle model, see “Ego Vehicle Predictive Model” on page 4-132.

 Lane Keeping Assist System

4-125

Selecting this parameter clears the Use vehicle model parameter.

Programmatic Use
Block Parameter: ModelType
Type: string, character vector
Default: "Use vehicle parameters"

Use vehicle model — Define ego vehicle model using state-space matrices
off (default) | on

Select this parameter to define the state-space matrices of the ego vehicle model used by the MPC
controller. This model is the linear model from the front steering angle in radians to the lateral
velocity in meters per second and yaw angle rate in radians per second. For more information on the
ego vehicle model, see “Ego Vehicle Predictive Model” on page 4-132.

To define the initial internal model, specify the A, B, and C state-space matrices. The internal model
must be a minimal realization with no direct feedthrough, and the dimensions of A, B, and C must be
consistent.

Typically, the ego vehicle steering model is velocity-dependent, and therefore, it varies over time. To
update the internal model at run time, use the Vehicle dynamics A, Vehicle dynamics B, and
Vehicle dynamics C input ports.

Selecting this parameter clears the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: ModelType
Type: string, character vector
Default: "Use vehicle parameters"

Total mass — Ego vehicle mass
1575 (default) | positive scalar

Ego vehicle mass in kg.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: VehicleMass
Type: string, character vector
Default: "1575"

Yaw moment of inertia — Moment of inertia about the ego vehicle vertical axis
2875 (default) | positive scalar

Moment of inertia about the ego vehicle vertical axis in Kg·m2.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: VehicleYawInertia
Type: string, character vector
Default: "2875"

4 Blocks

4-126

Longitudinal distance from center of gravity to front tires — Distance from the
ego vehicle center of mass to its front tires
1.2 (default) | positive scalar

Distance from the ego vehicle center of mass to its front tires in meters, measured along the
longitudinal axis of the vehicle.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: LengthToFront
Type: string, character vector
Default: "1.2"

Longitudinal distance from center of gravity to rear tires — Distance from the
ego vehicle center of mass to its rear tires
1.6 (default) | positive scalar

Distance from the ego vehicle center of mass to its rear tires in meters, measured along the
longitudinal axis of the vehicle.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: LengthToRear
Type: string, character vector
Default: "1.6"

Cornering stiffness of front tires — Front tire stiffness
19000 (default) | positive scalar

Front tire stiffness in N/rad, defined as the relationship between the side force on the front tires and
the angle of the tires to the longitudinal axis of the vehicle.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: FrontTireStiffness
Type: string, character vector
Default: "19000"

Cornering stiffness of rear tires — Rear tire stiffness
33000 (default) | positive scalar

Rear tire stiffness in N/rad, defined as the relationship between the side force on the rear tires and
the angle of the tires to the longitudinal axis of the vehicle.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

 Lane Keeping Assist System

4-127

Programmatic Use
Block Parameter: RearTireStiffness
Type: string, character vector
Default: "33000"

A — Initial state matrix of ego vehicle predictive model
square matrix

Initial state matrix of ego vehicle predictive model. The number of rows in the state matrix
corresponds to the number of states in the predictive model. This matrix must be square.

The initial ego vehicle predictive model defined by A, B, and C must be minimal.

Typically, the ego vehicle model varies over time. To update the state matrix at run time, use the
Vehicle dynamics A input port.

Dependencies

To enable this parameter, select the Use vehicle model parameter.

Programmatic Use
Block Parameter: EgoModelMatrixA
Type: string, character vector
Default: "[-4.4021 ,-12.4603;1.3913,-5.1868]"

B — Initial input-to-state matrix of ego vehicle predictive model
column vector

Initial input-to-state matrix of ego vehicle predictive model. The number of rows in this parameter
must match the number of rows in A.

The initial ego vehicle predictive model defined by A, B, and C must be minimal.

Typically, the ego vehicle model varies over time. To update the input-to-state matrix at run time, use
the Vehicle dynamics B input port.

Dependencies

To enable this parameter, select the Use vehicle model parameter.

Programmatic Use
Block Parameter: EgoModelMatrixB
Type: string, character vector
Default: "[24.1270;15.8609]"

C — Initial state-to-output matrix of ego vehicle predictive model
matrix with two rows

Initial state-to-output matrix of ego vehicle predictive model. The number of columns in this
parameter must match the number of rows in A.

The initial ego vehicle predictive model defined by A, B, and C must be minimal.

Typically, the ego vehicle model varies over time. To update the state-to-output matrix at run time,
use the Vehicle dynamics C input port.

4 Blocks

4-128

Dependencies

To enable this parameter, select the Use vehicle model parameter.

Programmatic Use
Block Parameter: EgoModelMatrixC
Type: string, character vector
Default: "[1,0;0,1]"

Initial longitudinal velocity — Initial velocity of the ego vehicle
15 (default) | positive scalar

Initial velocity of the ego vehicle model when the lane-keeping assist is enabled in m/s. This velocity
can differ from the actual ego vehicle initial velocity.

Note A very small initial velocity, for example eps, can produce a nonminimal realization for the
controller plant model, causing an error. To prevent this error, set the initial velocity to a larger value,
for example 1e-3.

Programmatic Use
Block Parameter: InitialLongVel
Type: string, character vector
Default: "15"

Transport lag between model inputs and outputs — Total transport lag in ego vehicle
model
0 (default) | nonnegative scalar

Total transport lag, τ, in the ego vehicle model in seconds. This lag includes actuator, sensor, and
communication lags. For each input-output channel, the transport lag is approximated by:

1
τs + 1

Programmatic Use
Block Parameter: TransportLag
Type: string, character vector
Default: "0"

Lane Keeping Controller Constraints

Minimum steering angle — Minimum front steering angle
-0.26 (default) | scalar between -pi/2 and pi/2

Minimum front steering angle constraint in radians.

If the minimum steering angle varies over time, add the Minimum steering angle input port to the
block by selecting Use external source.

Dependencies

This parameter must be less than the Maximum steering angle parameter.

 Lane Keeping Assist System

4-129

Programmatic Use
Block Parameter: MinSteering
Type: string, character vector
Default: "-0.26"

Maximum steering angle — Maximum front steering angle
0.26 (default) | scalar between -pi/2 and pi/2

Maximum front steering angle constraint in radians.

If the maximum steering angle varies over time, add the Maximum steering angle input port to the
block by selecting Use external source.

Dependencies

This parameter must be greater than the Minimum steering angle parameter.

Programmatic Use
Block Parameter: MaxSteering
Type: string, character vector
Default: "0.26"

Model Predictive Controller Settings

Sample time — Controller sample time
0.1 (default) | positive scalar

Controller sample time in seconds.

Programmatic Use
Block Parameter: Ts
Type: string, character vector
Default: "0.1"

Prediction horizon — Controller prediction horizon
10 (default) | positive integer

Controller prediction horizon steps. The controller prediction time is the product of the sample time
and the prediction horizon.

Programmatic Use
Block Parameter: PredictionHorizon
Type: string, character vector
Default: "30"

Controller behavior — Closed-loop controller performance
0.5 (default) | scalar between 0 and 1

Closed-loop controller performance. The default parameter value provides a balanced controller
design. Specifying a:

• Smaller value produces a more robust controller with smoother control actions.
• Larger value produces a more aggressive controller with a faster response time.

When you modify this parameter, the change is applied to the controller immediately.

4 Blocks

4-130

Programmatic Use
Block Parameter: ControllerBehavior
Type: string, character vector
Default: "0.5"

Block Tab

Use suboptimal solution — Apply suboptimal solution after specified number of
iterations
off (default) | on

Configure the controller to apply a suboptimal solution after a specified maximum number of
iterations, which guarantees the worst-case execution time for your controller.

For more information, see “Suboptimal QP Solution”.

Dependencies

After selecting this parameter, specify the Maximum iteration number parameter.

Programmatic Use
Block Parameter: suboptimal
Type: string, character vector
Default: "off"

Maximum iteration number — Maximum optimization iterations
10 (default) | positive integer

Maximum number of controller optimization iterations.

Dependencies

To enable this parameter, select the Use suboptimal solution parameter.

Programmatic Use
Block Parameter: maxiter
Type: string, character vector
Default: "10"

Use external signal to enable or disable optimization — Add port for enabling
optimization
off (default) | on

To add the Enable optimization input port to the block, select this parameter.

Programmatic Use
Block Parameter: optmode
Type: string, character vector
Default: "off"

Use external signal for bumpless transfer between LKA and other controllers —
Add external control signal input port
off (default) | on

To add the External control signal input port to the block, select this parameter.

 Lane Keeping Assist System

4-131

Programmatic Use
Block Parameter: trackmode
Type: string, character vector
Default: "off"

Create LKA subsystem — Create custom controller
button

Generate a custom LKA subsystem, which you can modify for your application. The controller
configuration data for the custom controller is exported to the MATLAB workspace as a structure.

You can modify the custom controller subsystem to:

• Modify default MPC settings or use advanced MPC features.
• Modify the default controller initial conditions.

Algorithms
Ego Vehicle Predictive Model

The default ego vehicle predictive model is the following state-space model:

A =
−2 CF + CR /m/VX −VX − 2 CFLF − CRLR /m/VX

−2 CFLF − CRLR /IZ/VX −2 CFLF
2 + CRLR

2 /IZ/VX

B = 2CF
1/m
LF/IZ

C =
1 0
0 1

D =
0
0

Here:

• VX is the longitudinal velocity of the car. At the start of the simulation, this velocity is equal to the
Initial condition for longitudinal velocity parameter. At run time, this velocity is equal to the
Longitudinal velocity input signal.

• m is the Total mass parameter.
• IZ is the Yaw moment of inertia parameter.
• LF is the Longitudinal distance from center of gravity to front tires parameter.
• LR is the Longitudinal distance from center of gravity to rear tires parameter.
• CF is the Cornering stiffness of front tires parameter.
• CR is the Cornering stiffness of rear tires parameter.

The input to this model is the steering angle in radians, and the outputs are the lateral velocity in
meters per second and yaw angle rate in radians per second.

To define a different ego vehicle predictive model, select the Use vehicle model parameter, and
specify the initial state-space model. Then, specify the run-time values of the state-space matrices
using the Vehicle dynamics A, Vehicle dynamics B, and Vehicle dynamics C input signals.

4 Blocks

4-132

The controller creates its internal predictive model by augmenting the ego vehicle dynamic model.
The augmented model includes the road curvature as a measured disturbance input signal.

Initial Conditions

By default, the model predictive controller assumes the following initial conditions for the ego
vehicle:

• Longitudinal velocity is equal to the Initial longitudinal velocity parameter.
• Lateral velocity is zero.
• Steering angle is zero.
• Yaw angle rate is zero.

If the initial conditions in your model do not match these conditions, the Steering angle output can
exhibit an initial bump at the start of the simulation.

To modify the controller initial conditions to match your simulation, create a custom lane-keeping
control system by, on the Block tab, clicking Create LKA subsystem.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
Adaptive MPC Controller | Adaptive Cruise Control System | Path Following Control System

Introduced in R2018a

 Lane Keeping Assist System

4-133

Path Following Control System
Simulate path-following control using adaptive model predictive controller
Library: Model Predictive Control Toolbox / Automated Driving

Description
The Path Following Control System block simulates a path-following control (PFC) system that keeps
an ego vehicle traveling along the center of a straight or curved road while tracking a set velocity and
maintaining a safe distance from a lead vehicle. To do so, the controller adjusts both the longitudinal
acceleration and front steering angle of the ego vehicle. The block computes optimal control actions
while satisfying safe distance, velocity, acceleration, and steering angle constraints using adaptive
model predictive control (MPC).

This block combines the capabilities of the Lane Keeping Assist System and Adaptive Cruise Control
System blocks into a single controller.

To customize your controller, for example to use advanced MPC features or modify controller initial
conditions, click Create PFC subsystem.

4 Blocks

4-134

Ports
Input

Set velocity — Ego vehicle velocity setpoint
nonnegative scalar

Ego vehicle velocity setpoint in m/s. When there is no lead vehicle, the controller tracks this velocity.

Time gap — Safe time gap
nonnegative scalar

Safe time gap in seconds between the lead vehicle and the ego vehicle. This time gap is used to
calculate the minimum safe following distance constraint. For more information, see “Safe Following
Distance” on page 4-149.

Relative distance — Distance between lead vehicle and ego vehicle
positive scalar

Distance in meters between lead vehicle and ego vehicle. To calculate this signal, subtract the ego
vehicle position from the lead vehicle position.

Relative velocity — Velocity difference between lead vehicle and ego vehicle
scalar

Velocity difference in meters per second between lead vehicle and ego vehicle. To calculate this
signal, subtract the ego vehicle velocity from the lead vehicle velocity.

Longitudinal velocity — Ego vehicle velocity
nonnegative scalar

Ego vehicle velocity in m/s.

Curvature — Road curvature
scalar

Road curvature, specified as 1/R, where R is the radius of the curve in meters.

The road curvature is:

• Positive when the road curves toward the positive Y axis of the global coordinate system.
• Negative when the road curves toward the negative Y axis of the global coordinate system.
• Zero for a straight road.

The controller models the road curvature as a measured disturbance with previewing. You can specify
the curvature as a:

• Scalar signal — Specify the curvature for the current control interval. The controller uses this
curvature value across the prediction horizon.

• Vector signal with length less than or equal to the Prediction Horizon — Specify the current and
predicted curvature values across the prediction horizon. If the length of the vector is less than
the prediction horizon, then the controller uses the final curvature value in the vector for the
remainder of the prediction horizon.

 Path Following Control System

4-135

Lateral deviation — Ego vehicle lateral deviation
scalar

Ego vehicle lateral deviation in meters from the centerline of the lane. The lateral deviation e1 is
positive when the ego vehicle is to the right of the centerline and negative when the ego vehicle is to
the left of the centerline.

Relative yaw angle — Angle from lane centerline
scalar

Ego vehicle longitudinal axis angle in radians from the centerline of the lane, defined as:

e2 = θe− θc

Here, θe is the ego vehicle angle and θc is the centerline angle, with both angles defined in the global
coordinate frame.

Minimum longitudinal acceleration — Minimum ego vehicle acceleration
scalar

Minimum ego vehicle longitudinal acceleration constraint in m/s2. Use this input port when the
minimum acceleration varies at run time.

Dependencies

To enable this port, select Use external source for the Minimum longitudinal acceleration
parameter.

Maximum longitudinal acceleration — Maximum ego vehicle acceleration
scalar

Maximum ego vehicle longitudinal acceleration constraint in m/s2. Use this input port when the
maximum acceleration varies at run time.

Dependencies

To enable this port, select Use external source for the Maximum longitudinal acceleration
parameter.

Minimum steering angle — Minimum front steering angle
scalar

Minimum front steering angle constraint in radians. Use this input port when the minimum steering
angle varies at run time.

Dependencies

To enable this port, select Use external source for the Minimum steering angle parameter.

Maximum steering angle — Maximum front steering angle
scalar

Maximum front steering angle constraint in radians. Use this input port when the maximum steering
angle varies at run time.

4 Blocks

4-136

Dependencies

To enable this port, select Use external source for the Maximum steering angle parameter.

Enable optimization — Controller optimization enable signal
scalar

Controller optimization enable signal. When this signal is:

• Nonzero, the controller performs optimization calculations and generates the Longitudinal
acceleration and Steering angle control signals.

• Zero, the controller does not perform optimization calculations. In this case, the Longitudinal
acceleration and Steering angle output signals remain at the values they had when the
optimization was disabled. The controller continues to update its internal state estimates.

Dependencies

To enable this port, select the Use external signal to enable or disable optimization parameter.

External control signal — Control signals applied to ego vehicle
vector of length two

Actual control signals applied to the ego vehicle. The first element of this signal is the longitudinal
acceleration in m/s2, and the second element is the steering angle in radians. The controller uses
these signals to estimate the ego vehicle model states. Use this input port when the control signals
applied to the ego vehicle do not match the optimal control signals computed by the model predictive
controller. This mismatch can occur when, for example:

• The Path Following Control System is not the active controller. Maintaining an accurate state
estimate when the controller is not active prevents bumps in the control signals when the
controller becomes active.

• The steering or acceleration actuator fails and does not provide the correct control signal to the
ego vehicle.

Dependencies

To enable this port, select the Use external control signal for bumpless transfer between PFC
and other controllers parameter.

Vehicle dynamics matrix A — State matrix of ego vehicle predictive model
square matrix

State matrix of ego vehicle predictive model. The number of rows in the state matrix corresponds to
the number of states in the predictive model. This matrix must be square.

The ego vehicle predictive model defined by Vehicle dynamics matrix A, Vehicle dynamics matrix
B, and Vehicle dynamics matrix C must be minimal.

Dependencies

To enable this port, select the Use vehicle model parameter.

Vehicle dynamics matrix B — Input-to-state matrix of ego vehicle predictive model
matrix with two columns

 Path Following Control System

4-137

Input-to-state matrix of ego vehicle predictive model. The number of rows in this signal must match
the number of rows in Vehicle dynamics matrix A.

The ego vehicle predictive model defined by Vehicle dynamics matrix A, Vehicle dynamics matrix
B, and Vehicle dynamics matrix C must be minimal.

Dependencies

To enable this port, select the Use vehicle model parameter.

Vehicle dynamics matrix C — State-to-output matrix of ego vehicle predictive model
matrix with three rows

State-to-output matrix of ego vehicle predictive model. The number of columns in this signal must
match the number of rows in Vehicle dynamics matrix A.

The ego vehicle predictive model defined by Vehicle dynamics matrix A, Vehicle dynamics matrix
B, and Vehicle dynamics matrix C must be minimal.

Dependencies

To enable this port, select the Use vehicle model parameter.

Output

Longitudinal acceleration — Acceleration control signal
scalar

Acceleration control signal in m/s2 generated by the controller.

Steering angle — Front steering angle control signal
scalar

Front steering angle control signal in radians generated by the controller. The front steering angle is
the angle of the front tires from the longitudinal axis of the vehicle. The steering angle is positive
towards the positive lateral axis of the ego vehicle.

Parameters
Parameters Tab

Ego Vehicle

Use vehicle parameters — Define ego vehicle model using vehicle properties
on (default) | off

Select this parameter to define the ego vehicle model used by the MPC controller by specifying
properties of the ego vehicle. The ego vehicle model is the linear model from the longitudinal
acceleration and front steering angle to the longitudinal velocity, lateral velocity, and yaw angle rate.

To define the vehicle model, specify the following block parameters:

• Total mass
• Yaw moment of inertia
• Longitudinal distance from center of gravity to front tires

4 Blocks

4-138

• Longitudinal distance from center of gravity to rear tires
• Cornering stiffness of front tires
• Cornering stiffness of rear tires
• Longitudinal acceleration tracking time constant

For more information on the ego vehicle model, see “Ego Vehicle Predictive Model” on page 4-147

Selecting this parameter clears the Use vehicle model parameter.
Programmatic Use
Block Parameter: ModelType
Type: string, character vector
Default: "Use vehicle parameters"

Use vehicle model — Define ego vehicle model using state-space matrices
off (default) | on

Select this parameter to define the state-space matrices of the ego vehicle model used by the MPC
controller. The ego vehicle model is the linear model from the longitudinal acceleration and front
steering angle to the longitudinal velocity, lateral velocity, and yaw angle rate.

To define the initial internal model, specify the A, B, and C state-space matrices. The internal model
must be a minimal realization with no direct feedthrough, and the dimensions of A, B, and C must be
consistent.

Typically, the ego vehicle model is velocity-dependent, and therefore, it varies over time. To update
the internal model at run time, use the Vehicle dynamics A, Vehicle dynamics B, and Vehicle
dynamics C input ports.

For more information on the ego vehicle model, see “Ego Vehicle Predictive Model” on page 4-147

Selecting this parameter clears the Use vehicle parameters parameter.
Programmatic Use
Block Parameter: ModelType
Type: string, character vector
Default: "Use vehicle parameters"

Total mass — Ego vehicle mass
1575 (default) | positive scalar

Ego vehicle mass in kg.
Dependencies

To enable this parameter, select the Use vehicle parameters parameter.
Programmatic Use
Block Parameter: VehicleMass
Type: string, character vector
Default: "1575"

Yaw moment of inertia — Moment of inertia about the ego vehicle vertical axis
2875 (default) | positive scalar

Moment of inertia about the ego vehicle vertical axis in Kg·m2.

 Path Following Control System

4-139

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.
Programmatic Use
Block Parameter: VehicleYawInertia
Type: string, character vector
Default: "2875"

Longitudinal distance from center of gravity to front tires — Distance from the
ego vehicle center of mass to its front tires
1.2 (default) | positive scalar

Distance from the ego vehicle center of mass to its front tires in meters, measured along the
longitudinal axis of the vehicle.
Dependencies

To enable this parameter, select the Use vehicle parameters parameter.
Programmatic Use
Block Parameter: LengthToFront
Type: string, character vector
Default: "1.2"

Longitudinal distance from center of gravity to rear tires — Distance from the
ego vehicle center of mass to its rear tires
1.6 (default) | positive scalar

Distance from the ego vehicle center of mass to its rear tires in meters, measured along the
longitudinal axis of the vehicle.
Dependencies

To enable this parameter, select the Use vehicle parameters parameter.
Programmatic Use
Block Parameter: LengthToRear
Type: string, character vector
Default: "1.6"

Cornering stiffness of front tires — Front tire stiffness
19000 (default) | positive scalar

Front tire stiffness in N/rad, defined as the relationship between the side force on the front tires and
the angle of the tires to the longitudinal axis of the vehicle.
Dependencies

To enable this parameter, select the Use vehicle parameters parameter.
Programmatic Use
Block Parameter: FrontTireStiffness
Type: string, character vector
Default: "19000"

Cornering stiffness of rear tires — Rear tire stiffness
33000 (default) | positive scalar

4 Blocks

4-140

Rear tire stiffness in N/rad, defined as the relationship between the side force on the rear tires and
the angle of the tires to the longitudinal axis of the vehicle.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: RearTireStiffness
Type: string, character vector
Default: "33000"

Longitudinal acceleration tracking time constant — Time constant for acceleration
tracking
0.5 (default) | positive scalar

Time constant for tracking longitudinal acceleration, specified in seconds.

Dependencies

To enable this parameter, select the Use vehicle parameters parameter.

Programmatic Use
Block Parameter: AccelTimeConstant
Type: string, character vector
Default: "0.5"

A — Initial state matrix of ego vehicle predictive model
square matrix

Initial state matrix of ego vehicle predictive model. The number of rows in the state matrix
corresponds to the number of states in the predictive model. This matrix must be square.

The initial ego vehicle predictive model defined by A, B, and C must be minimal.

Typically, the ego vehicle model varies over time. To update the state matrix at run time, use the
Vehicle dynamics A input port.

Dependencies

To enable this parameter, select the Use vehicle model parameter.

Programmatic Use
Block Parameter: EgoModelMatrixA
Type: string, character vector
Default: "[-4.4021 ,-12.4603;1.3913,-5.1868]"

B — Initial input-to-state matrix of ego vehicle predictive model
matrix with two columns

Initial input-to-state matrix of ego vehicle predictive model. The number of rows in this parameter
must match the number of rows in A.

The initial ego vehicle predictive model defined by A, B, and C must be minimal.

Typically, the ego vehicle model varies over time. To update the input-to-state matrix at run time, use
the Vehicle dynamics B input port.

 Path Following Control System

4-141

Dependencies

To enable this parameter, select the Use vehicle model parameter.

Programmatic Use
Block Parameter: EgoModelMatrixB
Type: string, character vector
Default: "[24.1270;15.8609]"

C — Initial state-to-output matrix of ego vehicle predictive model
matrix with three rows

Initial state-to-output matrix of ego vehicle predictive model. The number of columns in this
parameter must match the number of rows in A.

The initial ego vehicle predictive model defined by A, B, and C must be minimal.

Typically, the ego vehicle model varies over time. To update the state-to-output matrix at run time,
use the Vehicle dynamics C input port.

Dependencies

To enable this parameter, select the Use vehicle model parameter.

Programmatic Use
Block Parameter: EgoModelMatrixC
Type: string, character vector
Default: "[1,0;0,1]"

Initial longitudinal velocity — Initial velocity of the ego vehicle model
15 (default) | nonnegative scalar

Initial velocity of the ego vehicle model in m/s, which can differ from the actual ego vehicle initial
velocity.

This value is used to configure the initial conditions of the model predictive controller. For more
information, see “Initial Conditions” on page 4-149.

Note A very small initial velocity, for example eps, can produce a nonminimal realization for the
controller plant model, causing an error. To prevent this error, set the initial velocity to a larger value,
for example 1e-3.

Programmatic Use
Block Parameter: InitialLongVel
Type: string, character vector
Default: "15"

Transport lag between model inputs and outputs — Total transport lag in ego vehicle
model
0 (default) | nonnegative scalar

Total transport lag, τ, in the ego vehicle model in seconds. This lag includes actuator, sensor, and
communication lags. For each input-output channel, the transport lag model is:

4 Blocks

4-142

1
τs + 1

Programmatic Use
Block Parameter: TransportLag
Type: string, character vector
Default: "0"

Spacing Control

Maintain safe distance between lead vehicle and ego vehicle — Enable spacing
control
on (default) | off

To configure the safe following distance, set the Default spacing parameter. For more information
on the safe following distance used by the controller, see “Safe Following Distance” on page 4-149.

Programmatic Use
Block Parameter: spaceCtrl
Type: string, character vector
Default: "on"

Default spacing — Minimum spacing to lead vehicle
10 (default) | nonnegative scalar

Minimum spacing in meters between the lead vehicle and the ego vehicle. This value corresponds to
the target relative distance between the ego and lead vehicles when the ego vehicle velocity is zero.

This value is used to calculate the:

• Minimum safe following distance. For more information, see “Safe Following Distance” on page 4-
149.

• Controller initial conditions. For more information, see “Initial Conditions” on page 4-149.

Dependencies

To enable this parameter, select the Maintain safe distance between lead vehicle and ego
vehicle parameter.

Programmatic Use
Block Parameter: DefaultSpacing
Type: string, character vector
Default: "10"

Controller Tab

Path Following Controller Constraints

Minimum steering angle — Minimum front steering angle
-0.26 (default) | scalar between -pi/2 and pi/2

Minimum front steering angle constraint in radians.

If the minimum steering angle varies over time, add the Minimum steering angle input port to the
block by selecting Use external source.

 Path Following Control System

4-143

Dependencies

This parameter must be less than the Maximum steering angle parameter.
Programmatic Use
Block Parameter: MinSteering
Type: string, character vector
Default: "-0.26"

Maximum steering angle — Maximum front steering angle
0.26 (default) | scalar between -pi/2 and pi/2

Maximum front steering angle constraint in radians.

If the maximum steering angle varies over time, add the Maximum steering angle input port to the
block by selecting Use external source.
Dependencies

This parameter must be greater than the Minimum steering angle parameter.
Programmatic Use
Block Parameter: MaxSteering
Type: string, character vector
Default: "0.26"

Minimum longitudinal acceleration — Minimum ego vehicle acceleration
-3 (default) | scalar

Minimum ego vehicle longitudinal acceleration constraint in m/s2.

If the minimum acceleration varies over time, add the Minimum longitudinal acceleration input
port to the block by selecting Use external source.
Programmatic Use
Block Parameter: MinAcceleration
Type: string, character vector
Default: "-3"

Maximum longitudinal acceleration — Maximum ego vehicle acceleration
2 (default) | scalar

Maximum ego vehicle longitudinal acceleration constraint in m/s2.

If the maximum acceleration varies over time, add the Maximum longitudinal acceleration input
port to the block by selecting Use external source.
Programmatic Use
Block Parameter: MaxAcceleration
Type: string, character vector
Default: "2"

Model Predictive Controller Settings

Sample time — Controller sample time
0.1 (default) | positive scalar

Controller sample time in seconds.

4 Blocks

4-144

Programmatic Use
Block Parameter: Ts
Type: string, character vector
Default: "0.1"

Prediction horizon — Controller prediction horizon
10 (default) | positive integer

Controller prediction horizon steps. The controller prediction time is the product of the sample time
and the prediction horizon.

Programmatic Use
Block Parameter: PredictionHorizon
Type: string, character vector
Default: "30"

Control horizon — Controller control horizon
3 (default) | positive integer | vector of positive integers

Controller control horizon, specified as one of the following:

• Positive integer less than or equal to the Prediction horizon parameter. In this case, the
controller computes m free control moves occurring at times k through k+m-1, and holds the
controller output constant for the remaining prediction horizon steps from k+m through k+p-1.
Here, k is the current control interval.

• Vector of positive integers, [m1, m2, …], where the sum of the integers equals the Prediction
horizon parameter. In this case, the controller computes M blocks of free moves, where M is the
length of the control horizon vector. The first free move applies to times k through k+m1-1, the
second free move applies from time k+m1 through k+m1+m2-1, and so on. Using block moves can
improve the robustness of your controller.

Programmatic Use
Block Parameter: PredictionHorizon
Type: string, character vector
Default: "30"

Controller Behavior

Weight on velocity tracking — Tuning weight for longitudinal velocity tracking
0.1 (default) | positive scalar

Tuning weight for longitudinal velocity tracking. To produce smaller velocity-tracking errors, increase
this weight.

Programmatic Use
Block Parameter: LongWeight
Type: string, character vector
Default: "0.1"

Weight on lateral error — Tuning weight for lateral error
1 (default) | positive scalar

Tuning weight for lateral error. To produce smaller lateral errors, increase this weight.

 Path Following Control System

4-145

Programmatic Use
Block Parameter: LateralWeight
Type: string, character vector
Default: "1"

Weight on change of longitudinal acceleration — Tuning weight for change in
longitudinal acceleration
0.1 (default) | positive scalar

Tuning weight for changes in longitudinal acceleration. To produce less-aggressive vehicle
acceleration, increase this weight.

Programmatic Use
Block Parameter: AccelRateWeight
Type: string, character vector
Default: "0.1"

Weight on change of steering angle — Tuning weight for change in steering angle
0.1 (default) | positive scalar

Tuning weight for changes in steering angle. To produce less-aggressive steering angle changes,
increase this weight.

Programmatic Use
Block Parameter: SteerRateWeight
Type: string, character vector
Default: "0.1"

Block Tab

Use suboptimal solution — Apply suboptimal solution after specified number of
iterations
off (default) | on

Configure the controller to apply a suboptimal solution after a specified maximum number of
iterations, which guarantees the worst-case execution time for your controller.

For more information, see “Suboptimal QP Solution”.

Dependencies

After selecting this parameter, specify the Maximum iteration number parameter.

Programmatic Use
Block Parameter: suboptimal
Type: string, character vector
Default: "off"

Maximum iteration number — Maximum optimization iterations
10 (default) | positive integer

Maximum number of controller optimization iterations.

Dependencies

To enable this parameter, select the Use suboptimal solution parameter.

4 Blocks

4-146

Programmatic Use
Block Parameter: maxiter
Type: string, character vector
Default: "10"

Use external signal to enable or disable optimization — Add port for enabling
optimization
off (default) | on

To add the Enable optimization input port to the block, select this parameter.

Programmatic Use
Block Parameter: optmode
Type: string, character vector
Default: "off"

Use external signal for bumpless transfer between PFC and other controllers —
Add external control signal input port
off (default) | on

To add the External control signal input port to the block, select this parameter.

Programmatic Use
Block Parameter: trackmode
Type: string, character vector
Default: "off"

Create PFC subsystem — Create custom controller
button

Generate a custom PFC subsystem, which you can modify for your application. The configuration data
for the custom controller is exported to the MATLAB workspace as a structure.

You can modify the custom controller subsystem to:

• Modify default MPC settings or use advanced MPC features.
• Modify the default controller initial conditions.
• Use different application settings, such as a custom safe following distance definition.

Algorithms
Ego Vehicle Predictive Model

The default ego vehicle predictive model for path-following control is the combination of two state-
space models, one for adaptive cruise control and one for lane keeping.

Adaptive Cruise Control Predictive Model

The predictive state-space model for adaptive cruise control is:

 Path Following Control System

4-147

A1 =
−1/τ 0

1 0

B1 =
1/τ
0

C1 = 0 1
D1 = 0

Here, τ is the Longitudinal acceleration tracking time constant parameter.

The input to this model is the longitudinal acceleration in m/s2, and the output is the longitudinal
velocity in meters per second.

Lane-Keeping Predictive Model

The predictive state-space model for lane keeping is:

A2 =
−2 CF + CR /m/VX −VX − 2 CFLF − CRLR /m/VX

−2 CFLF − CRLR /IZ/VX −2 CFLF
2 + CRLR

2 /IZ/VX

B2 = 2CF
1/m
LF/IZ

C2 =
1 0
0 1

D2 =
0
0

Here:

• VX is the longitudinal velocity of the car. At the start of the simulation, this velocity is equal to the
Initial condition for longitudinal velocity parameter. At run time, this velocity is equal to the
Longitudinal velocity input signal.

• m is the Total mass parameter.
• IZ is the Yaw moment of inertia parameter.
• LF is the Longitudinal distance from center of gravity to front tires parameter.
• LR is the Longitudinal distance from center of gravity to rear tires parameter.
• CF is the Cornering stiffness of front tires parameter.
• CR is the Cornering stiffness of rear tires parameter.

The input to this model is the steering angle in radians. The outputs are the lateral velocity in meters
per second and yaw angle rate in radians per second.

Combined Path-Following Predictive Model

The Path Following Control System block combines these models as follows:

4 Blocks

4-148

A =
A1 0
0 A2

B =
B1 0
0 B2

C =
C1 0
0 C2

D =
D1 0
0 D2

The inputs to this combined model are the longitudinal acceleration in m/s2 and steering angle in
radians. The outputs are the longitudinal velocity in meters per second, lateral velocity in meters per
second, and yaw angle rate in radians per second.

The controller creates its internal predictive model by augmenting the ego vehicle dynamic model.
The augmented model includes the road curvature as a measured disturbance input signal.

Define a Custom Model

To define a different ego vehicle predictive model, select the Use vehicle model parameter, and
specify the initial state-space model. Then, specify the run-time values of the state-space matrices
using the Vehicle dynamics A, Vehicle dynamics B, and Vehicle dynamics C input signals.

Safe Following Distance

When the Maintain safe distance between lead vehicle and ego vehicle parameter is selected,
the model predictive controller computes the safe following distance constraint; that is, the minimum
relative distance between the lead and ego vehicle, as:

DR = DS + GT * VE

Here:

• DS is the Default spacing parameter.
• GT is the Time gap input signal.
• VE is the Longitudinal velocity input signal.

To define a different safe following distance constraint, create a custom path-following control system
by, on the Block tab, clicking Create PFC subsystem.

Initial Conditions

By default, the model predictive controller assumes the following initial conditions for the ego
vehicle:

• Longitudinal velocity is equal to the Initial longitudinal velocity parameter.
• Longitudinal acceleration is zero.
• Lateral velocity is zero.
• Steering angle is zero.
• Yaw angle rate is zero.

 Path Following Control System

4-149

When the Maintain safe distance between lead vehicle and ego vehicle parameter is selected,
the controller assumes the following additional initial conditions:

• The lead vehicle longitudinal velocity is equal to the Initial longitudinal velocity parameter.
• Relative distance between the lead vehicle and ego vehicle is:

DR = DS + GT * VE

Here:

• DS is the Default spacing parameter.
• GT is the time gap and is assumed to be 1.4.
• VE is the Initial longitudinal velocity parameter.

If the initial conditions in your model do not match these conditions, the Steering angle and
Longitudinal acceleration outputs can exhibit initial bumps at the start of the simulation.

To modify the controller initial conditions to match your simulation, create a custom path-following
control system by, on the Block tab, clicking Create PFC subsystem.

Extended Capabilities
C/C++ Code Generation
Generate C and C++ code using Simulink® Coder™.

PLC Code Generation
Generate Structured Text code using Simulink® PLC Coder™.

See Also
Blocks
Adaptive Cruise Control System | Lane Keeping Assist System

Introduced in R2019a

4 Blocks

4-150

	Apps
	MPC Designer

	Functions
	buildMEX
	cloffset
	compare
	convertToMPC
	createParameterBus
	d2d
	generateExplicitMPC
	generateExplicitOptions
	generateExplicitRange
	generatePlotParameters
	get
	getCodeGenerationData
	getCodeGenerationData
	getconstraint
	getEstimator
	getindist
	getname
	getoutdist
	getSimulationData
	gpc2mpc
	mpcActiveSetOptions
	mpcActiveSetSolver
	mpcInteriorPointOptions
	mpcInteriorPointSolver
	mpcmove
	mpcmoveAdaptive
	mpcmoveCodeGeneration
	mpcmoveExplicit
	mpcmoveMultiple
	mpcprops
	mpcqpsolver
	mpcqpsolverOptions
	mpcverbosity
	nlmpcmove
	nlmpcmoveCodeGeneration
	plot
	plotSection
	review
	sensitivity
	set
	setconstraint
	setCustomSolver
	setEstimator
	setindist
	setmpcsignals
	setname
	setoutdist
	setterminal
	sim
	simplify
	size
	ss
	tf
	trim
	validateFcns
	zpk

	Objects
	explicitMPC
	mpc
	mpcmoveopt
	mpcsimopt
	mpcstate
	nlmpc
	nlmpcMultistage
	nlmpcmoveopt

	Blocks
	MPC Controller
	Multiple MPC Controllers
	Explicit MPC Controller
	Adaptive MPC Controller
	Multiple Explicit MPC Controllers
	Nonlinear MPC Controller
	Multistage Nonlinear MPC Controller
	Adaptive Cruise Control System
	Lane Keeping Assist System
	Path Following Control System

