Model Predictive Control Toolbox™
Reference

Alberto Bemporad
N. Lawrence Ricker
Manfred Morari

MATLAB

R2022a ¢ } MathWorkse

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Model Predictive Control Toolbox™ Reference
© COPYRIGHT 2005-2022 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www .mathworks . com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History

October 2004
March 2005
September 2005
March 2006
September 2006
March 2007
September 2007
March 2008
October 2008
March 2009
September 2009
March 2010
September 2010
April 2011
September 2011
March 2012
September 2012
March 2013
September 2013
March 2014
October 2014
March 2015
September 2015
March 2016
September 2016
March 2017
September 2017
March 2018
September 2018
March 2019
September 2019
March 2020
September 2020
March 2021
September 2021
March 2022

First printing
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only
Online only

New for Version 2.1 (Release 14SP1)
Revised for Version 2.2 (Release 14SP2)
Revised for Version 2.2.1 (Release 14SP3)
Revised for Version 2.2.2 (Release 2006a)
Revised for Version 2.2.3 (Release 2006b)
Revised for Version 2.2.4 (Release 2007a)
Revised for Version 2.3 (Release 2007b)
Revised for Version 2.3.1 (Release 2008a)
Revised for Version 3.0 (Release 2008b)
Revised for Version 3.1 (Release 2009a)
Revised for Version 3.1.1 (Release 2009b)
Revised for Version 3.2 (Release 2010a)
Revised for Version 3.2.1 (Release 2010b)
Revised for Version 3.3 (Release 2011a)
Revised for Version 4.0 (Release 2011b)
Revised for Version 4.1 (Release 2012a)
Revised for Version 4.1.1 (Release 2012b)
Revised for Version 4.1.2 (Release 2013a)
Revised for Version 4.1.3 (Release R2013b)
Revised for Version 4.2 (Release R2014a)
Revised for Version 5.0 (Release R2014b)
Revised for Version 5.0.1 (Release 2015a)
Revised for Version 5.1 (Release 2015b)
Revised for Version 5.2 (Release 2016a)
Revised for Version 5.2.1 (Release 2016b)
Revised for Version 5.2.2 (Release 2017a)
Revised for Version 6.0 (Release 2017b)
Revised for Version 6.1 (Release 2018a)
Revised for Version 6.2 (Release 2018b)
Revised for Version 6.3 (Release 2019a)
Revised for Version 6.3.1 (Release 2019b)
Revised for Version 6.4 (Release 2020a)
Revised for Version 7.0 (Release 2020b)
Revised for Version 7.1 (Release 2021a)
Revised for Version 7.2 (Release 2021b)
Revised for Version 7.3 (Release 2022a)

Apps

1
Functions

2
Objects

3|
Blocks

4

Apps

1 Apps

MPC Designer

Design and simulate model predictive controllers

Description

The MPC Designer app lets you design and simulate model predictive controllers in MATLAB® and
Simulink®.

Using this app, you can:

+ Interactively design model predictive controllers and validate their performance using simulation
scenarios

* Obtain linear plant models by linearizing Simulink models (requires Simulink Control Design™)

* Review controller designs for potential run-time stability or numerical issues

* Compare response plots for multiple model predictive controllers

* Generate Simulink models with an MPC controller and plant model

* Generate MATLAB scripts to automate MPC controller design and simulation tasks
Limitations

The following advanced MPC features are not available in the MPC Designer app.

» Explicit MPC design

* Adaptive MPC design

* Nonlinear MPC design

* Mixed input/output constraints (setconstraint)

» Terminal weight specification (setterminal)

* Custom state estimation (setEstimator)

* Sensitivity analysis (sensitivity)

* Alternative cost functions with off-diagonal weights

» Specification of initial plant and controller states for simulation

* Specification of nominal state values using mpcObj .Model.Nominal.X and
mpcObj.Model.Nominal.DX

* Updating weights, constraints, MV targets, and external MVs online during simulations

If your application requires any of these features, design and simulate your controller at the
command line. You can also run simulations in Simulink when using these features.

When using MPC Designer in MATLAB Online™, the following features are not available.

+ Finding an operating point for linearizing a Simulink model using trimming or simulation
snapshots. Instead, you must linearize your model at the model initial conditions.

* Generating Simulink models for your controller and plant.

1-2

MPC Designer

4\ MPC Designer - scenariol: Output EI@
C 3 TUMIMG SC PLOT
sample time: [0.0 | - f t —@ t { n
MPC Contraller: mpel « R L Robust Closed- Loop Performanoe Apgressie M é%
Prediction horizon: |20) , , ,
Internal Plant: plant = . Constraints Weights Estimation u L " L v Review Stare Export
Cantrol hatizon: 5 Models v S State Estimation = Design Controller Controller
CONTROLLER HORIZON DESIGN PERFORMANCE TUNING ANALY 515
Data Browser ® | scenariol: Input | I scenatiol: Qutput 1
w Plants
lant
e Input Response (against internal plant) Output Response (against internal plant)
250 T T T T 1.2
) E— mpet] |
- : Response: mpel
200 | Fo8 ; Output: Out(1)
= |'| j Peak amplitude: 1.02
x 08 ,II | Attime (seconds): 2.7
[} .
w Controllers T |
150 1 g 04 i
mpel {current) .
- 0.2 !
s] |
@ 1
0
2100
= 40
o 1
S A
20 |

L - |
50 £ 0 _f AN
; 3 |
w Scenatios @ o0 | ||
scenariol % | ||
o— - 2 40 ||
| |
|
-60
II /
-50 * * * : 80 ==
0 2 4 6 B 10 0 2 4 6 B 10
Time (seconds) Time (seconds)

Open the MPC Designer App

* MATLAB Toolstrip: On the Apps tab, under Control System Design and Analysis, click the app
icon.

* MATLAB command prompt: Enter mpcDesigner.
* Simulink model editor: In the MPC Controller Block Parameters dialog box, click Design.

Examples

. “Design Controller Using MPC Designer”

. “Design MPC Controller in Simulink”

. “Compare Multiple Controller Responses Using MPC Designer”
. “Generate MATLAB Code from MPC Designer”

. “Generate Simulink Model from MPC Designer”

1-3

1 Apps

1-4

Programmatic Use

mpcDesigner opens the MPC Designer app. You can then import a plant or controller to start the
design process, or open a saved design session.

mpcDesigner(plant) opens the app and creates a default MPC controller using plant as the
internal prediction model. Specify plant as an ss, tf, or zpk LTI model.

If plant is a stable, continuous-time LTI system, MPC Designer sets the controller sample time to
0.1 T,, where T, is the average rise time of the plant. If plant is an unstable, continuous-time system,
MPC Designer sets the controller sample time to 1.

By default, plant input and output signals are treated as manipulated variables and measured outputs
respectively. To specify a different input/output channel configuration, use setmpcsignals before
opening MPC Designer.

You can also specify plant as a linear System Identification Toolbox™ model, such as an idss or idtf
system. The app converts the identified model to a state-space system, discarding any noise channels.
To convert noise channels to unmeasured disturbances, convert the identified model to a state-space
model using the 'augmented’ option. For more information on identifying plant models, see
“Identify Plant from Data”.

mpcDesigner (MPCobj) opens the app and imports the model predictive controller MPCobj from the
MATLAB workspace. To create an MPC controller, use mpc.

mpcDesigner (MPCobjs) opens the app and imports multiple MPC controllers specified in the cell
array MPCobjs. All of the controllers in MPCobjs must have the same input/output channel
configuration.

mpcDesigner (MPCobjs, names) additionally specifies controller names when opening the app with
multiple MPC controllers. Specify names as a cell array of character vectors or string array with the
same length as MPCobjs. Specify a unique name for each controller.

mpcDesigner(sessionFile) opens the app and loads a previously saved session. Specify
sessionFile as one of the following:

* The name of a session data file in the current working directory or on the MATLAB path, specified
as a character vector or string. To save session data to disk, in the MPC Designer app, on the

MPC Designer tab, click Save Session. The saved session data includes all plants,
controllers, and scenarios in the Data Browser, the current MPC structure, and the current plot
configuration.

* A previously loaded SessionData object in the MATLAB workspace. To load a SessionData
object from a session data file, at the command line, enter:

load sessionFile

Compatibility Considerations

Support for opening MPC Design Tool sessions saved before release R2015b has been
removed
Errors starting in R2021b

MPC Designer

Support for opening MPC Design Tool sessions saved before release R2015b has been removed in
release R2021b.

If you have sessions saved before release R2015b, open and resave the session files using MPC
Designer in any release from R2015b through R2021a.

See Also

Functions
mpc | sim

Topics

“Design Controller Using MPC Designer”

“Design MPC Controller in Simulink”

“Compare Multiple Controller Responses Using MPC Designer”
“Generate MATLAB Code from MPC Designer”

“Generate Simulink Model from MPC Designer”

Introduced in R2015b

1-5

Functions

2 Functions

buildMEX

Build MEX file that solves an MPC control problem

Syntax
mexLinFcn = buildMEX(mpcobj,mexName, coreData, stateData,onlineData)
mexNlnFcn = buildMEX(nlobj,mexName,coreData,onlineData)

mexFcn = buildMEX(nlobj,mexName, coreData,onlineData,mexConfig)

Description
Linear MPC

mexLinFcn = buildMEX(mpcobj,mexName, coreData,stateData,onlineData) builds a MEX
file that solves a linear MPC control problem faster than mpcmove. The MEX file is created in the
current working folder.

Nonlinear MPC

mexNlnFcn = buildMEX(nlobj,mexName, coreData,onlineData) builds a MEX file that solves
a nonlinear MPC control problem faster than nlmpcmove. The MEX file is created in the current
working folder.

mexFcn = buildMEX(nlobj,mexName, coreData,onlineData,mexConfig) generates a MEX
function using the code generation configuration object mexConfig. Use this syntax to customize
your MEX code generation.

Examples

Simulate Linear MPC Controller Using MEX File

Create a plant model and design an MPC controller for the plant, with sample time 0. 1.

plant = drss(1,1,1);plant.D = 0;
mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Simulate the plant using mpcmove for 5 steps.

X = 0;
xc = mpcstate(mpcobj);

-->No sample time provided for plant model. Assuming sample time = controller's sample time = 0.:

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

2-2

buildMEX

for i=1:5
% Update plant output.
y = plant.C*x;
% Compute control actions.
u = mpcmove(mpcobj,xc,y,1);
% Update plant state.
x = plant.A*x + plant.B*u;

end

Display the final value of the plant output, input and next state.
[y ux]

ans = 1Ix3

0.9999 0.3057 -2.3063

Generate data structures and build mex file.

[coreData,stateData,onlineData]l = getCodeGenerationData(mpcobj);
mexfun = buildMEX(mpcobj, 'myMPCMex', coreData, stateData, onlineData);

Generating MEX function "myMPCMex" from linear MPC to speed up simulation.
Code generation successful.

MEX function "myMPCMex" successfully generated.

Simulate the plant using the mex file myMPCmeXx, which you just generated, for 5 steps.

x=0;

for i = 1:5

% Update plant output.

y = plant.C*x;
% Update measured output in online data.
onlineData.signals.ym = y;
% Update reference signal in online data.
onlineData.signals.ref = 1;
% Compute control actions.
[u,stateData] = myMPCMex(stateData,onlineData);
% Update plant state.
x = plant.A*x + plant.B*u;

end

Display the final value of the plant output, input and next state.

[y u x]

ans = 1x3

0.9999 0.3057 -2.3063

Simulate Nonlinear MPC Controller Using MEX File

Create a nonlinear MPC controller with four states, two outputs, and one input.

2-3

2 Functions

nlobj = nlmpc(4,2,1);
In standard cost function, zero weights are applied by default to one or more 0Vs because there :

Specify the sample time and horizons of the controller.

Ts = 0.1;

nlobj.Ts = Ts;
nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDTO.m. This discrete-time
model integrates the continuous-time model defined in pendulumCTO.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDTO";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter Ts to represent the sample time. Specify the
number of parameters and create a parameter vector.

nlobj.Model.NumberOfParameters = 1;
params = {Ts};

Specify the output function of the model, passing the sample time parameter as an input argument.
nlobj.Model.OutputFcn = "pendulumOutputFcn";
Define standard constraints for the controller.

nlobj.Weights.OQutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.0V(1l).Min = -10;

nlobj.0V(1l).Max = 10;

nlobj.MV.Min -100;

nlobj.MV.Max 100;

Validate the prediction model functions.

X0 [0.1;0.2;-pi/2;0.3];
uo 0.4;
validateFcns(nlobj,x0,u0,[],params);

Model.StateFcn is OK.
Model.OQutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Only two of the plant states are measurable. Therefore, create an extended Kalman filter for
estimating the four plant states. Its state transition function is defined in pendulumStateFcn.m and
its measurement function is defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn,@pendulumMeasurementFcn);

Define initial conditions for the simulation, initialize the extended Kalman filter state, and specify a
zero initial manipulated variable value.

X0
yo

[0;0;-pi;0];
[x0(1);x0(3)];

2-4

buildMEX

EKF.State = x0;
mvO = 0;

Create code generation data structures for the controller, specifying the initial conditions and
parameters.

[coreData,onlineData] = getCodeGenerationData(nlobj,x0,mv0,params);
Specify the output reference value in the online data structure.

onlineData.ref = [0 0];

Build a MEX function for solving the nonlinear MPC control problem. The MEX function is created in
the current working directory.

mexFcn = buildMEX(nlobj, "myController",coreData,onlineData);

Generating MEX function "myController" from nonlinear MPC to speed up simulation.
Code generation successful.

MEX function "myController" successfully generated.
Run the simulation for 10 seconds. During each control interval:

Correct the previous prediction using the current measurement.

Compute optimal control moves using the MEX function. This function returns the computed
optimal sequences in onlineData. Passing the updated data structure to the MEX function in
the next control interval provides initial guesses for the optimal sequences.

3 Predict the model states.

4 Apply the first computed optimal control move to the plant, updating the plant states.
5 Generate sensor data with white noise.

6 Save the plant states.

mv = mvO;

y = y0;

X = Xx0;
Duration = 10;
xHistory = x0;

for ct = 1:(Duration/Ts)
% Correct previous prediction
xk = correct(EKF,y);
% Compute optimal control move
[mv,onlineData] = myController(xk,mv,onlineData);
% Predict prediction model states for the next iteration
predict(EKF, [mv; Tsl);
% Implement first optimal control move
= pendulumDTO(x,mv,Ts);
% Generate sensor data
y = x([1 3]) + randn(2,1)*0.01;
% Save plant states
xHistory = [xHistory x];
end

x

Plot the resulting state trajectories.

figure
subplot(2,2,1)

2-5

2 Functions

plot(0:Ts:Duration,xHistory(1,:))
xlabel('time")
ylabel('z")
title('cart position')
subplot(2,2,2)
plot(0:Ts:Duration,xHistory(2,:))
xlabel('time")

ylabel('zdot")

title('cart velocity')
subplot(2,2,3)
plot(0:Ts:Duration,xHistory(3,:))
xlabel('time")

ylabel('theta')

title('pendulum angle')
subplot(2,2,4)
plot(0:Ts:Duration,xHistory(4,:))
xlabel('time")

ylabel('thetadot')
title('pendulum velocity')

cart position

0.5
II/_\/'_,_,-"‘H-‘.-]
’ |I AN
|
N
0.5
| |
III
11y
0 5 10
time
pendulum angle
U |I|r \—;____,_,.o-—o—u--._,-'-_,_,—_—._,.-'——_a---_,-n
|
|
f
II
3 : f
] [
= |
- |
I
-3
0 5 10
time

2-6

Input Arguments

mpcobj — Model predictive controller

mpc object | explicitMPC object

zdot

thetad ot

cart velocity

[
\\h_ FINAN S et

0 5 10
time
pendulum velocity

o

)

0 \mx-f‘”’u AATAV ST AT Ao
] 5 10
fime

Model predictive controller, specified as one of the following:

buildMEX

* mpc object — Implicit MPC controller
* explicitMPC object — Explicit MPC controller created using generateExplicitMPC.

nlobj — Nonlinear model predictive controller
nlmpc object | nlmpcMultistage object

Nonlinear model predictive controller, specified as an nlmpc or nlmpcMultistage object.
Your controller must use the default fmincon solver with the SQP algorithm. Also, your controller
must not use anonymous functions for its prediction model, custom cost function, or custom

constraint functions.

mexName — MEX function name
string | character vector

MEX function name, specified as a string or character vector.

coreData — Controller configuration parameters
structure

Nonlinear MPC configuration parameters that are constant at run time, specified as a structure
generated using getCodeGenerationData.

stateData — Linear controller state data structure
structure

Linear controller state data structure at run time, specified as a structure generated using
getCodeGenerationData.

onlineData — Initial online controller data
structure

Initial online controller data, specified as a structure generated using getCodeGenerationData.
For more information on setting the fields of onlineData, see nlmpcmoveCodeGeneration.

mexConfig — Code generation configuration object
MexCodeConfig object

Code generation configuration object, specified as a MexCodeConfig object.
To create the configuration object, use the following code.
mexConfig = coder.config('mex');

To customize your MEX code generation, modify the settings of this object. For example, to detect
run-time memory access violations during debugging, set IntegrityChecks to true.

mexConfig.IntegrityChecks = true;

By default, to improve the performance of the generated code, checks such as IntegrityChecks
and ResponsivenessChecks are disabled by buildMEX.

buildMEX overwrites the following configuration settings with the values indicated.

2-7

2 Functions

2-8

Configuration Setting Value
cfg.DynamicMemoryAllocation 'AllVariableSizeArrays'
cfg.ConstantInputs ‘Remove’

Output Arguments

mexLinFcn — Generated MEX function for linear MPC
function handle

Generated MEX function for linear MPC, returned as a function handle. This MEX function has the
following signature.

[mv,newStateData,info] = mexLinFcn(stateData,onlineData)

The MEX function has the following input arguments, which are the same as the corresponding input
arguments of mpcmoveCodeGeneration, except configData, which is embedded in mexLinFcn .

Input Argument Description

stateData Current state data. Structure containing the state of the linear
MPC controller. For more information on setting the fields of
onlineData, see mpcmoveCodeGeneration

onlineData Online controller data that you must update at run time, specified
as a structure. Generate the initial structure using
getCodeGenerationData. For more information on setting the
fields of onlineData, see mpcmoveCodeGeneration.

The MEX function has the following output arguments, which are the same as the output arguments
of mpcmoveCodeGeneration.

Output Argument Description

mv Optimal manipulated variable control action, returned as a
column vector of length N,,,, where N,,, is the number of
manipulated variables.

newStateData Updated state data. Structure containing the updated state of
the linear MPC controller. For more information on setting the
fields of onlineData, see mpcmoveCodeGeneration

info Solution details, returned as a structure.

To simulate a controller using the generated MEX function, use the initial online data structure
onlineData for the first control interval. For subsequent control intervals, modify the online data in
newOnlineData and pass the updated structure to the MEX function as onlineData.

mexNlnFcn — Generated MEX function for nonlinear MPC
function handle

Generated MEX function for nonlinear MPC, returned as a function handle. This MEX function has
the following signature.

[mv,newOnlineData,info] = mexNlnFcn(x,lastMV,onlineData)

buildMEX

The MEX function has the following input arguments, which are the same as the corresponding input
arguments of nlmpcmoveCodeGeneration.

Input Argument

Description

X Current prediction model states, specified as a vector of length
N,, where N, is the number of prediction model states.

lastMV Control signals used in plant at previous control interval,
specified as a vector of length N,,,,, where N,,,, is the number of
manipulated variables.

onlineData Online controller data that you must update at run time, specified

as a structure. Generate the initial structure using
getCodeGenerationData. For more information on setting the
fields of onlineData, see nlmpcmoveCodeGeneration.

The MEX function has the following output arguments, which are the same as the output arguments

of nlmpcmoveCodeGeneration.

Output Argument Description

mv Optimal manipulated variable control action, returned as a
column vector of length N,,,, where N,,, is the number of
manipulated variables.

newOnlineData Updated online controller data, returned as a structure. This
structure is the same as onlineData, except that the decision
variable initial guesses are updated.

info Solution details, returned as a structure.

To simulate a controller using the generated MEX function, use the initial online data structure
onlineData for the first control interval. For subsequent control intervals, modify the online data in
newOnlineData and pass the updated structure to the MEX function as onlineData.

See Also

mpc | nlmpc | mpcmove | nlmpcmove | mpcmoveCodeGeneration | nlmpcmoveCodeGeneration |

getCodeGenerationData

Topics

“Parallel Parking Using Nonlinear Model Predictive Control”

Introduced in R2020a

2-9

2 Functions

2-10

cloffset

Compute closed-loop DC gain from output disturbances to measured outputs assuming constraints
are inactive at steady state

Syntax

dcgain = cloffset(MPCobj)

Description

Use this function to calculate the steady state output sensitivity of the closed loop. A zero value
means that the measured plant output can track the desired output reference setpoint.

dcgain = cloffset(MPCobj) returns the DC gain matrix dcgain. mpcobj is the MPC object
specifying the controller for which the closed-loop gain is calculated.

Constant
- -Measured Disturbances Unmeasured
= Disturbances
V(K]
- Unmeasured Disturbances P]ant 4 A5 Measured Outputs
' it Ymn(K) -
model

Manipulated Variables
ulk)

MPC
Controller

(linearized) References - .
(k) g

Computing the Effect of Output Disturbances
Relying on the superposition of effects principle, the gain is computed by zeroing references,

measured disturbances, and unmeasured input disturbances.

Examples

Calculate steady state output sensitivity of MPC in closed loop

Create a plant, a corresponding MPC object, and calculate the closed loop static gain (this is also
referred to as steady state loop output sensitivity).

mpcverbosity off; % turn off mpc messaging
plant=tf(1,[1 1]1,0.2); % create plant (0.2 seconds sampling time)
mpcobj=mpc(plant,0.2); % create mpc object (0.2 second sampling time)

cloffset

cloffset(mpcobj) % calculate steady state output sensitivity of closed loop
ans =
0

A zero gain (which is typically the result of the controller having
% integrators as input or output disturbance models) means that the
% measured plant output will track the desired output reference setpoint.

zpk(mpcobj) % convert unconstrained MPC to zero/pole/gain form
ans =

From input "MO1" to output "MV1":
0.45205 z72 (z-1.5)

(z-1) (z-0.02575) (z+0.02485)

Sample time: 0.2 seconds
Discrete-time zero/pole/gain model.

Converting the unconstrained controller to zpk form shows that the pole in z=1, (resulting from the
default noise model being an integrator), causes the controller static gain to approach infinity, in turn
causing the closes loop output sensitivity to be zero at steady state (z=1). This allows the controller
to successfully track the output reference signal.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.
Output Arguments

dcgain — Steady state closed loop output sensitivity
matrix

The steady state closed loop output sensitivity dcgain is an ny,-by-n,,, matrix , where n,, is the
number of measured plant outputs.dcgain(i, j) represents the gain from an additive (constant)
disturbance on output j to measured output i. If row i contains all zeros, there will be no steady-
state offset on output i, and that the controller can achieve perfect tracking of the ith component of
an output reference setpoint (assuming constraints are inactive at steady state).

See Also
mpc | ss

Topics
“Compute Steady-State Gain”

Introduced before R2006a

2-11

2 Functions

2-12

compare

Compare two MPC objects

Syntax

yesno = compare(mpcobjl,mpcobj2)

Description

yesno = compare(mpcobjl,mpcobj2) compares the contents of the two MPC objects mpcobj1l
and, mpcobj2 given as input arguments. If the design specifications (models, weights, horizons, etc.)
are identical, then the returned value yesno is equal to 1.

Note compare may return yesno = 1 even if the two objects are not identical. For instance,
mpcobj1 may have been initialized while mpcobj2 may have not, so that they may have different
sizes in memory. In any case, if yesno = 1, the behavior of the two controllers will be identical.

Examples

Compare two MPC objects
Create two MPC controllers with different control horizons and compare them.

plant=zpk([],2,1);
mpcverbosity off;
mpcobjl=mpc(plant,0.1,10,2
mpcobj2=mpc(plant,0.1,10,3

create plant

turn off MPC messaging
)
)

o o o o°

’
’

o®

compare (mpcobjl,mpcobj2) compare the controllers

ans =

logical
0

Input Arguments

mpcobjl — MPC controller object
mpc object

First MPC object to compare
Example: mpc(tf(1,[1 0]),1,12,3)

mpcobj2 — MPC controller object
mpc object

Second MPC object to compare
Example: mpc(tf(1,[1 0]),1,12,4)

create an mpc controller with a control horizon of 2 steps
create an mpc controller with a control horizon of 3 steps

compare

Output Arguments

yesno — Comparison result
0]1

The returned value is a logical 1 (that is true) if the design specifications (models, weights, horizons,
etc.) are identical.

See Also
mpc

Introduced before R2006a

2-13

2 Functions

2-14

convertToMPC

Convert nlmpc object into one or more mpc objects

Syntax

mpcobj
mpcobj
mpcobj

convertToMPC(nlmpcobj,states,inputs)
convertToMPC(nlmpcobj,states, inputs,MOIndex)
convertToMPC(nlmpcobj,states,inputs,MOIndex, parameters)

Description

In practice, when producing comparable performance, linear MPC is preferred over nonlinear MPC
due to its higher computational efficiency. Using the convertToMPC function, you can convert a
nonlinear MPC controller into one or more linear MPC controllers at specific operating points. You
can then implement gain-scheduled or adaptive MPC using the linear controllers and compare their
performance to the benchmark nonlinear MPC controller. For an example, see “Nonlinear and Gain-
Scheduled MPC Control of an Ethylene Oxidation Plant”.

To use convertToMPC, your nonlinear controller must not have custom cost or constraint functions,
since these custom functions are not supported for linear MPC controllers.

mpcobj = convertToMPC(nlmpcobj,states,inputs) converts the nonlinear MPC controller
object nlmpcobj into one or more linear MPC controller objects at the nominal conditions specified
in states and inputs. The number of linear MPC controllers, N, is equal to the number of rows in
states and inputs.

mpcobj = convertToMPC(nlmpcobj,states,inputs,M0Index) specifies the indices of the
measured outputs. Use this syntax when your controller has unmeasured output signals.

mpcobj = convertToMPC(nlmpcobj,states,inputs,M0Index,parameters) specifies the
values of prediction model parameters for each nominal condition. Use this syntax when your
controller prediction model has optional parameters.

Examples

Create Linear MPC Controllers from Nonlinear MPC Controller

Create a nonlinear MPC controller with four states, one output variable, one manipulated variable,
and one measured disturbance.

nlobj = nlmpc(4,1, 'MV',1,'MD"',2);
Specify the controller sample time and horizons.

nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 3;

Specify the state function of the prediction model.

nlobj.Model.StateFcn = 'oxidationStateFcn';

convertToMPC

Specify the prediction model output function and the output variable scale factor.

nlobj.Model.QutputFcn = @(x,u) x(3);
nlobj.OutputVariables.ScaleFactor = 0.03;

Specify the manipulated variable constraints and scale factor.

nlobj.ManipulatedVariables.Min = 0.0704;
nlobj.ManipulatedVariables.Max = 0.7042;
nlobj.ManipulatedVariables.ScaleFactor = 0.6;

Specify the measured disturbance scale factor.

nlobj.MeasuredDisturbances.ScaleFactor = 0.5;

Compute the state and input operating conditions for three linear MPC controllers using the fsolve
function.

options = optimoptions('fsolve', 'Display', 'none');

uLow = [0.38 0.5];

xLow = fsolve(@(x) oxidationStateFcn(x,uLow),[1 0.3 0.03 1],options);
uMedium = [0.24 0.5];

xMedium = fsolve(@(x) oxidationStateFcn(x,uMedium),[1l 0.3 0.03 1],options);
uHigh = [0.15 0.5];

xHigh = fsolve(@(x) oxidationStateFcn(x,uHigh),[1 0.3 0.03 1],options);

Create linear MPC controllers for each of these nominal conditions.

mpcobjLow = convertToMPC(nlobj,xLow,ulLow);
mpcobjMedium = convertToMPC(nlobj,xMedium,uMedium);
mpcobjHigh = convertToMPC(nlobj,xHigh,uHigh);

You can also create multiple controllers using arrays of nominal conditions. The number of rows in
the arrays specifies the number controllers to create. The linear controllers are returned as cell array
of mpc objects.

u = [uLow; uMedium; uHigh];

x = [xLow; xMedium; xHigh];

mpcobjs = convertToMPC(nlobj,x,u);

View the properties of the mpcobjLow controller.
mpcobjLow

MPC object (created on 26-Feb-2022 20:07:05):

Sampling time: 1 (seconds)
Prediction Horizon: 10
Control Horizon: 3

Plant Model:

1 manipulated variable(s) -->|
| |--> 1 measured output(s)
1 measured disturbance(s) -->|

2-15

2 Functions

2-16

| |--> 0 unmeasured output(s)
0 unmeasured disturbance(s) -->| 1 outputs |

Indices:
(input vector) Manipulated variables: [1]
Measured disturbances: [2]
(output vector) Measured outputs: [1]

Disturbance and Noise Models:
Output disturbance model: default (type "getoutdist(mpcobjLow)" for details)
Measurement noise model: default (unity gain after scaling)

Weights:
ManipulatedVariables: ©
ManipulatedVariablesRate: 0.1000
OutputVariables: 1
ECR: 100000
State Estimation: Default Kalman Filter (type "getEstimator(mpcobjLow)" for details)

Constraints:
0.0704 <= ul <= 0.7042, ul/rate is unconstrained, yl is unconstrained

Input Arguments

nlmpcobj — Nonlinear MPC controller
nlmpc object

Nonlinear MPC controller, specified as an nlmpc object.

Note Your nlmpc controller object must not have custom cost or constraint functions.

states — Nominal state values
array

Nominal state values, specified as an N-by-N, array, where N, is equal to
nlmpcobj.Dimensions.NumberOfStates. Each row of States specifies a nominal set of states to
be used in conversion.

The number of rows in states and inputs must match.

inputs — Nominal input values
array

Nominal input values, specified as an N-by-N, array, where N, is equal to
nlmpcobj.Dimensions.NumberOfInputs. Each row of Inputs specifies a nominal set of inputs to
be used in conversion.

The number of rows in states and inputs must match.

MOIndex — Measured output indices
[1 (default) | vector

convertToMPC

Measured output indices, specified as a vector of length N,, where N, is the number of outputs. If
MOIndex is [], every output is measured. Otherwise, any outputs not listed in MOIndex are
unmeasured.

convertToMPC uses MOIndex to configure the default state estimators in mpcobj.

parameters — Prediction model parameter values
{} (default) | cell array

Prediction model parameter values, specified as an N-by-N,, cell array, where N, is equal to
nlmpcobj.Model.NumberOfParameters. Each row of parameters specifies the model parameter
values for a given nominal condition. In each row, the order of the parameters must match the order
specified in the model functions. Each parameter must be a numeric parameter with the correct
dimensions; that is, the dimensions expected by the prediction model functions.

For each nominal condition, these parameters are passed to the state function
(nlmpcobj .Model.StateFcn) and output function (nlmpcobj .Model.OutputFcn) of the
nonlinear MPC controller.

The number of rows in parameters must match the number of rows in states and inputs.

If your controller prediction model has optional parameters, you must specify parameters.

Output Arguments

mpcobj — Linear MPC controllers
mpc object | cell array of mpc objects

Linear MPC controllers created for each nominal condition, returned as one of the following:

* Single mpc object when N = 1.

» Cell array of mpc objects of length N when N > 1. Each object corresponds to one nominal
condition.

convertToMPC copies the following controller properties from nlmpcobj to the controllers in
mpcobj:

* Sample time

* Prediction and control horizons

* Tuning weights

* Bounds on output variables, manipulated variables, and manipulated variable rates

* Scale factors, names, and units for variables and disturbances

If nlmpcobj:

* Has unmeasured disturbance channels, then the controllers in mpcobj have unity gains for their
input and output disturbance models.

* Does not have unmeasured disturbance channels, then the controllers in mpcobj have default
output disturbance models.

Any state bounds in nlmpcobj are dropped during conversion.

2-17

2 Functions

See Also
nlmpc

Topics
“Nonlinear MPC”
“Nonlinear and Gain-Scheduled MPC Control of an Ethylene Oxidation Plant”

Introduced in R2018b

2-18

createParameterBus

createParameterBus

Create Simulink bus object and configure Bus Creator block for passing model parameters to
Nonlinear MPC Controller block

Syntax

createParameterBus(nlmpcobj,nlmpcblk, busName, parameters)

Description

createParameterBus(nlmpcobj,nlmpcblk, busName, parameters) creates a Simulink.Bus
object, busName, in the MATLAB workspace for passing model parameters to a Nonlinear MPC
Controller block, nlmpcblk. createParameterBus requires you to connect a Bus Creator block to
the Nonlinear MPC Controller block in advance so that it can configure the Bus Creator block to use
the bus object.

Examples

Create Parameter Bus for Nonlinear MPC Controller Block

Create a nonlinear MPC controller with four states, two outputs, and one input.

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more 0Vs because there :
Specify the sample time and horizons of the controller.

Ts = 0.1;

nlobj.Ts = Ts;

nlobj.PredictionHorizon = 10;

nlobj.ControlHorizon = 5;

Specify the state function for the controller, which is in the file pendulumDTO.m. This discrete-time
model integrates the continuous-time model defined in pendulumCT0.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDTO";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter, Ts, to represent the sample time. Specify the
number of parameters.

nlobj.Model.NumberOfParameters = 1;

Specify the output function of the model, passing the sample-time parameter as an input argument.
nlobj.Model.OutputFcn = @(x,u,Ts) [x(1); x(3)1;

Define standard constraints for the controller.

2-19

2 Functions

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;
nlobj.0V(1l).Min = -10;

nlobj.0V(1l).Max = 10;

nlobj.MV.Min = -100;

nlobj.MV.Max = 100;

Open Simulink model.

mdl = 'mpc pendcartNMPC';
open_system(mdl)

StateTransitionFoninputs

shat

yi

F

E

F

=3

I @

=

Copyright 1990-2020 The MathWorks, Inc. Animaticn

In this model, the Nonlinear MPC Controller block is configured to use the controller nlobj.

To use the optional parameter in the prediction model, the model has a Simulink Bus block connected
to the params input port of the Nonlinear MPC Controller block. To configure this bus block to use
the Ts parameter, create a Bus object in the MATLAB® workspace, and configure the Bus Creator
block to use this object. Name the Bus object 'myBusObject"'.

createParameterBus(nlobj, [mdl '/Nonlinear MPC Controller'], 'myBusObject',{Ts});

bdclose(mdl)
A Simulink Bus object "myBusObject" created in the MATLAB Workspace, and Bus Creator block "mpc |

Input Arguments

nlmpcobj — Nonlinear MPC controller
nlmpc ohject

Nonlinear MPC controller, specified as an nlmpc object.

2-20

createParameterBus

nlmpcblk — Block path of Nonlinear MPC Controller block
string | character vector

Block path of Nonlinear MPC Controller block, specified as a string or character vector.

busName — Name of Simulink bus object
string | character vector

Name of Simulink bus object to be created in the MATLAB workspace and set in the Bus Creator
block, specified as a string or character vector.

The corresponding Bus Creator block must already be connected to the params input port of the
Nonlinear MPC Controller block specified by nlmpcblk. Also, the Bus Creator block must have the
correct number of input ports, and these ports must already be properly connected.

parameters — Nominal prediction model parameter values
cell array

Nominal prediction model parameter values, specified as a cell array of length N, where N, is equal
to nlmpcobj .Model.NumberOfParameters. The order of the parameters must match the order
specified in the model functions, and each parameter must be a numeric parameter with the correct
dimensions.

See Also

Functions
nlmpc | nlmpcmove | nlmpcmoveopt

Blocks
Nonlinear MPC Controller

Topics
“Specify Prediction Model for Nonlinear MPC”

Introduced in R2018b

2-21

2 Functions

2-22

d2d

Change sampling time of an MPC controller

Syntax

newmpc = d2d(MPCobj,newTs)

Description

Use the Model Predictive Control Toolbox d2d function to change the sampling time of an MPC
controller (see mpc for background).

To resample a generic discrete-time LTT dynamical system instead, see d2d.

newmpc = d2d(MPCobj,newTs) returns the controller newmpc, which is identical to MPCobj except
for the new sample time newTs. This is equivalent to coying MPCobj in a new object newmpc and
assigning a new sample using either newmpc.Ts=newTs or set(newmpc, 'Ts"',newTs). All models
in newmpc are sampled or resampled when the QP matrices must be computed, for example when
sim or mpcmove are called.

Examples

Change sampling time of MPC controller

Create a plant, a corresponding MPC object, and create a new controller with a different sampling
time.

mpcverbosity off;
plant=tf(1,[1 1]);
mpcobj=mpc(plant,1);

turn off mpc messaging
create plant (note the steady state gain)
create mpc object (1 second sampling time)

o® o° of

o°

newmpc=d2d(mpcobj,0.2);
newmpc.Ts
ans =

0.2000

change sampling time to 0.2 seconds

newmpc.Ts=1;
compare (newmpc,mpcobj)
ans =
logical
1

change sampling time back to 1 second
compare the two controllers

o® o°

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

d2d

newTs — Sampling Time
positive scalar

This is the new sampling time for the returned, resampled, MPC controller mpcobjTs.

Example: 0.2

Output Arguments

newmpc — MPC controller with the new sampling time
mpc object

This is the returned MPC controller, which is identical to MPCobj except for the fact that its sampling
time is now newTs. The internal models of newmpc are sampled or resampled when the QP matrices
must be computed for the MPC optimization problem to be solved.(for example when sim or mpcmove
are called).

See Also
mpc | set

Introduced before R2006a

2-23

2 Functions

2-24

generateExplicitMPC

Convert implicit MPC controller to explicit MPC controller

Syntax

EMPCobj = generateExplicitMPC(MPCobj, range)
EMPCobj generateExplicitMPC(MPCobj, range,opt)

Description

Given a traditional Model Predictive Controller design in the implicit form, convert it to the explicit
form for real-time applications requiring fast sample time.

EMPCobj = generateExplicitMPC(MPCobj, range) converts a traditional (implicit) MPC
controller to the equivalent explicit MPC controller, using the specified parameter bounds. This
calculation usually requires significant computational effort because a multi-parametric quadratic
programming problem is solved during the conversion.

EMPCobj = generateExplicitMPC(MPCobj, range,opt) converts the MPC controller using
additional optimization options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-integrator
plant.

Define the double-integrator plant.
plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a prediction
horizon of 10, and a control horizon of 3.

Ts = 0.1;
p = 10;
m= 3;

MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such as state
values and manipulated variables. To do so, generate a range structure. Then, modify values within
the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

generateExplicitMPC

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) [-10;-101;
range.State.Max(:) [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;
range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

-1.1;
1.1;

Use the more robust reduction method for the computation. Use generateExplicitOptions to
create a default options set, and then modify the polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj, range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.
Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.

Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an mpc object

range — Parameter bounds
structure

Parameter bounds, specified as a structure that you create with the generateExplicitRange
command. This structure specifies the bounds on the parameters upon which the explicit MPC control
law depends, such as state values, measured disturbances, and manipulated variables. For detailed
descriptions of the range parameters, see generateExplicitRange.

opt — optimization options
structure

2-25

2 Functions

Optimization options for the conversion computation, specified as a structure that you create with the
generateExplicitOptions function. For detailed descriptions of these options, see
generateExplicitOptions.

Output Arguments

EMPCobj — Explicit MPC controller
explicitMPC object

Explicit MPC controller that is equivalent to the input traditional controller, returned as an
explicitMPC object.

Property Description

MPC Traditional (implicit) controller object used to
generate the explicit MPC controller. You create
this MPC controller using is the mpc command. It
is the first argument to generateExplicitMPC
when you create the explicit MPC controller.

Range 1-D structure containing the parameter bounds
used to generate the explicit MPC controller.
These determine the resulting controller’s valid
operating range. This property is automatically
populated by the range input argument to
generateExplicitMPC when you create the
explicit MPC controller. See
generateExplicitRange for details about this
structure.

OptimizationOptions 1-D structure containing user-modifiable options
used to generate the explicit MPC controller. This
property is automatically populated by the opt
argument to generateExplicitMPC when you
create the explicit MPC controller. See
generateExplicitOptions for details about
this structure.

PiecewiseAffineSolution n,-dimensional structure, where n, is the number
of piecewise affine (PWA) regions required to
represent the control law. The ith element
contains the details needed to compute the
optimal manipulated variables when the solution
lies within the ith region. See “Implementation”.

IsSimplified Logical switch indicating whether the explicit
control law has been modified using the
simplify command such that the explicit
control law approximates the base (implicit) MPC
controller. If the control law has not been
modified, the explicit controller should reproduce
the base controller’s behavior exactly, provided
both operate within the bounds described by the
Range property.

2-26

generateExplicitMPC

Tips

» Using Explicit MPC, you will most likely achieve best performance in small control problems,
which involve small numbers of plant inputs/outputs/states as well as the number of constraints.

» Test the implicit controller thoroughly before attempting a conversion. This helps to determine the
range of controller states and other parameters needed to generate the explicit controller.

* Simulate the explicit controller’s performance using the sim or mpcmoveExplicit commands, or
the Explicit MPC Controller block in Simulink.

* generateExplicitMPC displays progress messages in the command window. Use
mpcverbosity to turn off the display.

See Also
mpc | generateExplicitRange | generateExplicitOptions | simplify

Topics

“Explicit MPC Control of a Single-Input-Single-Output Plant”

“Explicit MPC Control of an Aircraft with Unstable Poles”

“Explicit MPC Control of DC Servomotor with Constraint on Unmeasured Output”
“Explicit MPC”

“Design Workflow for Explicit MPC”

Introduced in R2014b

2-27

2 Functions

generateExplicitOptions

Optimization options for explicit MPC generation

Syntax

opt = generateExplicitOptions(MPCobj)

Description
opt = generateExplicitOptions(MPCobj) creates a set of options to use when converting a

traditional MPC controller, MPCobj, to explicit form using generateExplicitMPC. The options set is
returned with all options set to default values. Use dot notation to modify the options.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-integrator
plant.

Define the double-integrator plant.
plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a prediction
horizon of 10, and a control horizon of 3.

Ts = 0.1;

p = 10;

m= 3;

MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such as state
values and manipulated variables. To do so, generate a range structure. Then, modify values within
the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;

2-28

generateExplicitOptions

range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

-1.1;
1.1;

Use the more robust reduction method for the computation. Use generateExplicitOptions to
create a default options set, and then modify the polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj, range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command to create a
traditional MPC controller.

Output Arguments

opt — Options for generating explicit MPC controller
structure

Options for generating explicit MPC controller, returned as a structure. When you create the
structure, all the options are set to default values. Use dot notation to modify any options you want to
change. The fields and their default values are as follows.

zerotol — Zero-detection tolerance
le-8 (default) | positive scalar value

Zero-detection tolerance used by the NNLS solver, specified as a positive scalar value.

removetol — Redundant-inequality-constraint detection tolerance
le-4 (default) | positive scalar value

Redundant-inequality-constraint detection tolerance, specified as a positive scalar value.

2-29

2 Functions

2-30

flattol — Flat region detection tolerance
le-5 (default) | positive scalar value

Flat region detection tolerance, specified as a positive scalar value.

normalizetol — Constraint normalization tolerance
0.01 (default) | positive scalar value

Constraint normalization tolerance, specified as a positive scalar value.

maxiterNNLS — Maximum number of NNLS solver iterations
500 (default) | positive integer

Maximum number of NNLS solver iterations, specified as a positive integer.

maxiterQP — Maximum number of QP solver iterations
200 (default) | positive integer

Maximum number of QP solver iterations, specified as a positive integer.

maxiterBS — Maximum number of bisection method iterations
100 (default) | positive integer

Maximum number of bisection method iterations used to detect region flatness, specified as a positive
integer.

polyreduction — Method for removing redundant inequalities
2 (default) | 1

Method used to remove redundant inequalities, specified as either 1 (robust) or 2 (fast).

See Also
generateExplicitMPC

Introduced in R2014b

generateExplicitRange

generateExplicitRange

Bounds on explicit MPC control law parameters

Syntax

Range = generateExplicitRange(MPCobj)

Description

Range = generateExplicitRange(MPCobj) creates a structure of parameter bounds based upon
a traditional (implicit) MPC controller object. The range structure is intended for use as an input
argument to generateExplicitMPC. Usually, the initial range values returned by
generateExplicitRange are not suitable for generating an explicit MPC controller. Therefore, use
dot notation to set the values of the range structure before calling generateExplicitMPC.

Examples

Generate Explicit MPC Controller

Generate an explicit MPC controller based upon a traditional MPC controller for a double-integrator
plant.

Define the double-integrator plant.
plant = tf(1,[1 0 0]);

Create a traditional (implicit) MPC controller for this plant, with sample time 0.1, a prediction
horizon of 10, and a control horizon of 3.

Ts = 0.1;
p = 10;
m=3;

MPCobj = mpc(plant,Ts,p,m);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

To generate an explicit MPC controller, you must specify the ranges of parameters such as state
values and manipulated variables. To do so, generate a range structure. Then, modify values within
the structure to the desired parameter ranges.

range = generateExplicitRange(MPCobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

range.State.Min(:)
range.State.Max(:)

[-10;-10];
[10;10];

2-31

2 Functions

range.Reference.Min = -2;
range.Reference.Max = 2;
range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

-1.1;
1.1;

Use the more robust reduction method for the computation. Use generateExplicitOptions to
create a default options set, and then modify the polyreduction option.

opt = generateExplicitOptions(MPCobj);
opt.polyreduction = 1;

Generate the explicit MPC controller.

EMPCobj = generateExplicitMPC(MPCobj, range,opt)

Explicit MPC Controller

Controller sample time: 0.1 (seconds)
Polyhedral regions: 1

Number of parameters: 4

Is solution simplified: No

State Estimation: Default Kalman gain

Type 'EMPCobj.MPC' for the original implicit MPC design.

Type 'EMPCobj.Range' for the valid range of parameters.

Type 'EMPCobj.OptimizationOptions' for the options used in multi-parametric QP computation.
Type 'EMPCobj.PiecewiseAffineSolution' for regions and gain in each solution.

Input Arguments

MPCobj — Traditional MPC controller
MPC controller object

Traditional MPC controller, specified as an MPC controller object. Use the mpc command to create a

traditional MPC controller.

Output Arguments

Range — Parameter bounds
structure

Parameter bounds for generating an explicit MPC controller from MPCobj, returned as a structure.

Initially, each parameter’s minimum and maximum bounds are identical. All such parameters are
considered fixed. When you generate an explicit controller, any fixed parameters must be constant
when the controller operates. This is unlikely to happen in general. Thus, you must specify valid
bounds for all parameters. Use dot notation to set the values of the range structure as appropriate for
your system.

The fields of the range structure are as follows.

State — Bounds on controller state values
structure

2-32

generateExplicitRange

Bounds on controller state values, specified as a structure containing fields Min and Max. Each of Min
and Max is a vector of length n,, where n, is the number of controller states. Range.State.Min and
Range.State.Max contain the minimum and maximum values, respectively, of all controller states.
For example, suppose you are designing a two-state controller. You have determined that the range of
the first controller state is [-1000, 1000], and that of the second controller state is [@,2*pi]. Set
these bounds as follows:

[-1000,0];
[1000,2*pi];

Range.State.Min(:)
Range.State.Max(:)

MPC controller states include states from plant model, disturbance model, and noise model, in that
order. Setting the range of a state variable is sometimes difficult when a state does not correspond to
a physical parameter. In that case, multiple runs of open-loop plant simulation with typical reference
and disturbance signals are recommended in order to collect data that reflect the ranges of states.

Reference — Bounds on controller reference signal values
structure

Bounds on controller reference signal values, specified as a structure containing fields Min and Max.
Each of Min and Max is a vector of length n,, where n, is the number of plant outputs.
Range.Reference.Min and Range.Reference.Max contain the minimum and maximum values,
respectively, of all reference signal values. For example, suppose you are designing a controller for a
two-output plant. You have determined that the range of the first plant output is [-1000,1000], and
that of the second plant output is [0,2*pi]. Set these bounds as follows:

[-1000,0];
[1000,2%pi];

Range.Reference.Min(:)
Range.Reference.Max(:)

Usually you know the practical range of the reference signals being used at the nominal operating
point in the plant. The ranges used to generate the explicit MPC controller must be at least as large
as the practical range.

MeasuredDisturbance — Bounds on measured disturbance values
structure

Bounds on measured disturbance values, specified as a structure containing fields Min and Max. Each
of Min and Max is a vector of length n,,;, where n,,4 is the number of measured disturbances. If your
system has no measured disturbances, leave the generated values of this field unchanged.

Range.MeasuredDisturbance.Min and Range.MeasuredDisturbance.Max contain the
minimum and maximum values, respectively, of all measured disturbance signals. For example,
suppose you are designing a controller for a system with two measured disturbances. You have
determined that the range of the first disturbance is [-1, 1], and that of the second disturbance is
[0,0.1]. Set these bounds as follows:

Range.Reference.Min(:)
Range.Reference.Max(:)

[-1,0];
[1,0.1];

Usually you know the practical range of the measured disturbance signals being used at the nominal
operating point in the plant. The ranges used to generate the explicit MPC controller must be at least
as large as the practical range.

ManipulatedVariable — Bounds on manipulated variable values
structure

2-33

2 Functions

2-34

Bounds on manipulated variable values, specified as a structure containing fields Min and Max. Each
of Min and Max is a vector of length n,, where n, is the number of manipulated variables.
Range.ManipulatedVariable.Min and Range.ManipulatedVariable.Max contain the
minimum and maximum values, respectively, of all manipulated variables. For example, suppose your
system has two manipulated variables. The range of the first manipulated variable is [-1,1], and
that of the second variable is [0,0.1]. Set these bounds as follows:

Range.ManipulatedVariable.Min(:
Range.ManipulatedVariable.Max(:

['110];
[1,0.1];

If manipulated variables are constrained, the ranges used to generate the explicit MPC controller
must be at least as large as these limits.

See Also
mpc | generateExplicitMPC | generateExplicitOptions

Introduced in R2014b

generatePlotParameters

generatePlotParameters

Parameters for plotSection

Syntax

plotParams = generatePlotParameters(EMPCobj)

Desc

ription

plotParams = generatePlotParameters(EMPCobj) creates a structure of parameters for a 2-D
sectional plot of the explicit MPC control law of the explicit MPC controller, EMPCobj. You set the
fields of this structure and use it to generate the plot using the plotSection command

Examples

Specify Fixed Parameters for 2-D Plot of Explicit Control Law

Define

a double integrator plant model and create a traditional implicit MPC controller for this plant.

Constrain the manipulated variable to have an absolute value less than 1.

plant
MPCobj

-->The
-->The
-->The

MPCobj
Define
range

-->Con
-->Con

Ass
-->The

range.
range.
range.
range.
range.
range.

Create
EMPCob

Region

= tf(1,[1 0 0]);
= mpc(plant,0.1,10,3);

"Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
"Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
"Weights.OutputVariables" property is empty. Assuming default 1.00000.

.MV = struct('Min', -1, 'Max"',1);

the parameter bounds for generating an explicit MPC controller.

= generateExplicitRange(MPCobj);

verting the "Model.Plant" property to state-space.

verting model to discrete time.
uming no disturbance added to measured output channel #1.

"Model.Noise" property is empty. Assuming white noise on each measured output.
State.Min(:) [-10;-10];
State.Max(:) [10;10];

Reference.Min(:) = -2;
Reference.Max(:) = 2;
ManipulatedVariable.Min(:)
ManipulatedVariable.Max(:)

-1.1;

an explicit MPC controller.
j = generateExplicitMPC(MPCobj, range);

s found / unexplored: 19/ 0

2-35

2 Functions

Create a default plot parameter structure, which specifies that all of the controller parameters are
fixed at their nominal values for plotting.

plotParams = generatePlotParameters(EMPCobj);
Allow the controller states to vary when creating a plot.

plotParams.State.Index
plotParams.State.Value

[1;
[1;
Fix the manipulated variable and reference signal to 0 for plotting.
plotParams.ManipulatedVariable.Index(1)
plotParams.ManipulatedVariable.Value(1)

plotParams.Reference.Index(1) 1;
plotParams.Reference.Value(1l) 0;

1;
0;

Generate the 2-D section plot for the explicit MPC controller.

plotSection(EMPCobj,plotParams)

2-D Plot of Explicit MPC Polyhedral Partition

ans =
Figure (1: PiecewiseAffineSectionPlot) with properties:

Number: 1
Name: 'PiecewiseAffineSectionPlot'
Color: [1 1 1]
Position: [360 502 560 420]

2-36

generatePlotParameters

Units: 'pixels'

Show all properties

Input Arguments

EMPCobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller for which you want to create a 2-D sectional plot, specified as an Explicit
MPC controller object. Use generateExplicitMPC to create an explicit MPC controller.

Output Arguments

plotParams — Parameters for sectional plot
structure

Parameters for sectional plot of explicit MPC control law, returned as a structure.

As returned by generatePlotParameters, the plotParams structure command fixes all the
control law’s parameters at their nominal values. To obtain the desired plot, eliminate the Index and
Value entries of the two parameters forming the plot axes, and modify fixed values as necessary.
Then, use the plotSection command to display the 2-D sectional plot of the explicit control law’s
PWA regions with the remaining free parameters as the x and y axes.

The fields of the plot-parameters structure are as follows.

State — Fixed controller states
structure

Fixed controller states, specified as a structure having an Index field and a Value field. The field
plotParams.State.Index is a vector that contains the indices of the controller states to fix for the
plot, and plotParams.State.Value contains the corresponding constant state values.

Modify the default value of plotParams.State to generate the desired plot. See “Specify Fixed
Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

Reference — Fixed reference signal values
structure

Fixed reference signal values, specified as a structure having an Index field and a Value field. The
field plotParams.Reference.Index is a vector that contains the indices of the reference signals to
fix for the plot, and plotParams.Reference.Value contains the corresponding constant reference
signal values.

Modify the default value of plotParams.Reference to generate the desired plot. See “Specify
Fixed Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

MeasuredDisturbance — Fixed measured disturbance values
structure

Fixed measured disturbance values, specified as a structure having an Index field and a Value field.
The field plotParams.MeasuredDisturbance. Index is a vector that contains the indices of the

2-37

2 Functions

2-38

measured disturbances to fix for the plot, and plotParams.MeasuredDisturbance.Value
contains the corresponding constant measured disturbance values.

Modify the default value of plotParams.MeasuredDisturbance to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

ManipulatedVariable — Fixed manipulated variable values
structure

Fixed manipulated variable values, specified as a structure having an Index field and a Value field.
The field plotParams.ManipulatedVariable. Index is a vector that contains the indices of the
manipulated variables to fix for the plot, and plotParams.ManipulatedVariable.Value contains
the corresponding constant manipulated variable values.

Modify the default value of plotParams.ManipulatedVariable to generate the desired plot. See
“Specify Fixed Parameters for 2-D Plot of Explicit Control Law” on page 2-35.

See Also
generateExplicitMPC | plotSection

Introduced in R2014b

get

get

Get property values from MPC object

Syntax

PropertyValue = get(MPCobj,PropertyName)
Struct = get(MPCobj)
get (MPCobj)

Description

Use the Model Predictive Control Toolbox get function to read the property values of an MPC
controller (see mpc for background).

To implement Get/Set interface of standard MATLAB object, see “Implement Set/Get Interface for
Properties”.

PropertyValue = get(MPCobj,PropertyName) returns the current value of the property
PropertyName of the MPC controller MPCobj.

Struct = get(MPCobj) converts the MPC controller MPCobj into a standard MATLAB structure
with the property names as field names and the property values as field values.

get (MPCobj) without a left-side argument displays all properties of MPCobj and their values.

Examples

Get property values from an MPC object

Create plant model and related MPC object

mpcverbosity off; % turn off mpc messages
% create plant model

plant = rss(4,4,4);
plant.D = 0;

random state space
set D matrix to zero

[
)
[

)

mpcobj=mpc(plant,l);
Get values of some properties

>> get(mpcobj,'Ts")
ans =

1
>> get(mpcobj,"Ts")
ans =

1
>> mpcobj.Ts
ans =

1

2-39

2 Functions

>> get(mpcobj, 'ControlHorizon")

ans =

2
>> get(mpcobj, 'Model")
ans =

struct with fields:

Plant: [4x4 ss]
Disturbance: []
Noise: []
Nominal: [1x1 struct]

% display all properties
get(mpcobj)
Ts: 1
PredictionHorizon (P): 10
ControlHorizon (C): 2
Model: [1x1 struct]
ManipulatedVariables (MV): [1x4 struct]
OutputVariables (0V): [1x4 struct]
DisturbanceVariables (DV): []
Weights (W): [1x1 struct]
Optimizer: [1x1 struct]
Notes: {}
UserData: []
History: 11-Sep-2020 16:50:19

% get whole MPC structure
WholeMPCStruct=get(mpcobj);

% display History field
WholeMPCStruct.History
ans =
1.0e+03 *
2.0200 0.0090 0.0110 0.0160 0.0500 0.0193

Input Arguments

MPCobj — Model predictive controller
MPC controller ohject

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

PropertyName — Name of MPC object property
character array | string

Specify PropertyName as a character array or string that contains the full property name (for
example, 'UserData') or any unambiguous case-insensitive abbreviation (for example, 'user'
instead of 'UserData'). You can specify any generic MPC property.

Example: 'Model"

2-40

get

Output Arguments

PropertyValue — Value of MPC object property
double | matrix | structure | other

The value returned in PropertyValue depends on the specific property of the MPC object. See
mpcprops for more information on MPC object properties.

Struct — Structure containing all property values
double | matrix | structure | other

This is a standard MATLAB structure containing all the property names of the MPC object as field
names and the property values as field values. See mpcprops for more information on MPC object
properties.

Tips

An alternative to the syntax

Value = get(MPCobj, 'PropertyName')
is the structure-like referencing

Value = MPCobj.PropertyName

For example,

MPCobj.Ts
MPCobj.p

return the values of the sampling time and prediction horizon of the MPC controller MPCobj.

See Also
mpc | set | mpcprops

Introduced before R2006a

2-41

2 Functions

getCodeGenerationData

Create data structures for mpcmoveCodeGeneration

Syntax

[configData,stateData,onlineData] = getCodeGenerationData(mpcobj)
[1 = getCodeGenerationData(_ ,Name,Value)

Description

Use this function to create data structures for the mpcmoveCodeGeneration function, which
computes optimal control moves for implicit and explicit linear MPC controllers.

For information on generating data structures for nlmpcmoveCodeGeneration, see
getCodeGenerationData.

[configData,stateData,onlineData] = getCodeGenerationData(mpcobj) creates data
structures for use with mpcmoveCodeGeneration.

[1 = getCodeGenerationData(__ ,Name,Value) specifies additional options using one or
more Name, Value pair arguments.

Examples

Create MPC Code Generation Data Structures

Create a plant model, and define the MPC signal types.

plant = rss(3,2,2);
plant.D = 0;
plant = setmpcsignals(plant, 'mv',1,'ud"',2,'mo"',1,'uo"',2);

Create an MPC controller.
mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

for output(s) yl and zero weight for output(s) y2

Configure your controller parameters. For example, define bounds for the manipulated variable.

mpcObj.ManipulatedVariables.Min
mpcObj.ManipulatedVariables.Max

-1’
1;

Create code generation data structures.

[configData,stateData,onlineDatal] = getCodeGenerationData(mpcObj);

2-42

getCodeGenerationData

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Specify Options for Creating MPC Code Generation Structures

Create a plant model, and define the MPC signal types.

Create an MPC controller.
mpcObj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Create code generation data structures. Configure options to:

» Use single-precision floating-point values in the generated code.
* Improve computational efficiency by not computing optimal sequence data.
* Run your MPC controller in adaptive mode.

[configData,stateData,onlineData] = getCodeGenerationData(mpcObj, ...
'DataType', 'single', 'OnlyComputeCost', true, 'IsAdaptive',true);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white
-->Assuming output disturbance added to measured output channel #2 is integrated white
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Input Arguments

mpcobj — Model predictive controller
mpc object | explicitMPC object

Model predictive controller, specified as one of the following:

2-43

noise.
noise.

noise.
noise.

2 Functions

2-44

* mpc object — Implicit MPC controller
* explicitMPC object — Explicit MPC controller created using generateExplicitMPC.

Name-Value Pair Arguments

Specify optional pairs of arguments as Namel=Valuel, ...,NameN=ValueN, where Name is the
argument name and Value is the corresponding value. Name-value arguments must appear after
other arguments, but the order of the pairs does not matter.

Before R2021a, use commas to separate each name and value, and enclose Name in quotes.

Example: 'DataType', 'single’ specifies that the generated code uses single-precision floating
point values.

InitialState — Initial controller state
mpcstate object

Initial controller state when using mpcmoveCodeGeneration, specified as the comma-separated pair
consisting of 'InitialState' and an mpcstate object. This state is used in place of the default
state information from mpcobj.

DataType — Data type used in generated code
'double’ (default) | 'single’

Data type used in generated code when using mpcmoveCodeGeneration, specified as specified as
the comma-separated pair consisting of 'DataType' and one of the following:

* ‘'double' — Use double-precision floating point values.
* 'single' — Use single-precision floating point values.

OnlyComputeCost — Toggle for computing only optimal cost
false (default) | true

Toggle for computing only optimal cost during simulation when using mpcmoveCodeGeneration,
specified as specified as the comma-separated pair consisting of 'OnlyComputeCost' and either
true or false. To reduce computational load by not calculating optimal sequence data, set
OnlyComputeCost to true.

IsAdaptive — Adaptive MPC indicator
false (default) | true

Adaptive MPC indicator when using mpcmoveCodeGeneration, specified as specified as the comma-
separated pair consisting of 'IsAdaptive' and either true or false. Set IsAdaptive to true if
your controller is running in adaptive mode.

For more information on adaptive MPC, see “Adaptive MPC”.

Note IsAdaptive and IsLTV cannot be true at the same time.

IsLTV — Time-varying MPC indicator
false (default) | true

getCodeGenerationData

Time-varying MPC indicator when using mpcmoveCodeGeneration, specified as the comma-
separated pair consisting of 'IsLTV' and either true or false. Set IsLTV to true if your controller
is running in time-varying mode.

For more information on time-varying MPC, see “Time-Varying MPC”.

Note IsAdaptive and IsLTV cannot be true at the same time.

UseVariableHorizon — Variable horizon indicator
false (default) | true

Variable horizon indicator when using mpcmoveCodeGeneration, specified as the comma-separated
pair consisting of 'UseVariableHorizon' and either true or false. To vary your prediction and
control horizons at run time, set UseVariableHorizons to true.

When you use variable horizons, mpcmoveCodeGeneration ignores the horizons specified in
configData and instead uses the prediction and control horizon specified in
onlineData.horizons.

For more information, see “Adjust Horizons at Run Time”.

Output Arguments

configData — MPC configuration parameters
structure

MPC configuration parameters that are constant at run time, returned as a structure. These
parameters are derived from the controller settings in mpcobj. When simulating your controller, pass
configData to mpcmoveCodeGeneration without changing any parameters.

For more information on how generated MPC code uses constant matrices in configData to solve
the QP problem, see “QP Problem Construction for Generated C Code”.

stateData — Initial controller states
structure

Initial controller states, returned as a structure. To initialize your simulation with the initial states
defined in mpcobj, pass stateData to mpcmoveCodeGeneration. To use different initial conditions,
modify stateData. You can specify nondefault controller states using InitialState.

For more information on the stateData fields, see mpcmoveCodeGeneration.

stateData has the following fields.

Field Description

Plant Plant model state estimates

Disturbance Unmeasured disturbance model state estimates

Noise Output measurement noise model state estimates

LastMove Manipulated variable control moves from previous control interval
Covariance Covariance matrix for controller state estimates

2-45

2 Functions

Field

Description

iA

Active inequality constraints

onlineData — Online MPC controller data

structure

Online MPC controller data that you must update at each control interval, returned as a structure

with the following fields.

Field

Description

signals

Input and output signals,

returned as a structure with the following fields.

limits

Field Description

ym Measured outputs

ref Output references

md Measured disturbances

mvTarget Targets for manipulated variables
externalMV Manipulated variables externally applied to the

plant

Input and output constraints, returned as a structure with the following
fields:

Field Description

ymin Lower bounds on output signals

ymax Upper bounds on output signals

umin Lower bounds on input signals

umax Upper bounds on input signals

ignores the limits field.

When mpcobj is an explicit MPC controller, mpcmoveCodeGeneration

weights

Updated QP optimization

weights, returned as a structure with the

following fields:

Field Description

ywt Output weights

uwt Manipulated variable weights

duwt Manipulated variable rate weights

ecr Weight on slack variable used for constraint
softening

When mpcobj is an expli

cit MPC controller, npcmoveCodeGeneration

ignores the weights field.

2-46

getCodeGenerationData

Field

Description

customconstraints

Updated custom mixed input/output constraints, returned as a structure
with the following fields:

Field Description

E Manipulated variable constraint constant
F Controlled output constraint constant

G Mixed input/output constraint constant

S Measured disturbance constraint constant

When mpcobj is an explicit MPC controller, mpcmoveCodeGeneration
ignores the customconstraints field.

horizons

Updated controller horizon values, returned as a structure with the
following fields:

Field Description

p Prediction horizon

m Control horizon

The horizons field is returned only when the UseVariableHorizon
name-value pair is true.

When mpcobj is an explicit MPC controller, mpcmoveCodeGeneration
ignores the horizons field.

model

Updated plant and nominal values for adaptive MPC and time-varying MPC,
returned as a structure with the following fields:

Field Description

A B CD State-space matrices of discrete-time state-space
model.
Nominal plant states

U Nominal plant inputs
Nominal plant outputs

DX Nominal plant state derivatives

The model field is returned only when either the IsAdaptive or ISLTV
name-value pair is true.

getCodeGenerationData returns onlineData with empty matrices for all structure fields, except
signals.ref, signals.ym, and signals.md. These fields contain the corresponding nominal
signal values from mpcobj. If your controller does not have measured disturbances, signals.md is
returned as an empty matrix.

For more information on configuring onlineData fields, see mpcmoveCodeGeneration.

See Also

mpcmoveCodeGeneration | nlmpcmove

2-47

2 Functions

Topics

“Generate Code to Compute Optimal MPC Moves in MATLAB”
“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2016a

2-48

getCodeGenerationData

getCodeGenerationData

Create data structures for nlmpcmoveCodeGeneration

Syntax

[coreData,onlineDatal getCodeGenerationData(nlobj,x,lastMV)
[coreData,onlineData] = getCodeGenerationData(nlobj,x,lastMV,params)
[1 = getCodeGenerationData(,field)

[1 = getCodeGenerationData(,fieldl,...,fieldn)

Description

Use this function to create data structures for the nlmpcmoveCodeGeneration function, which
computes optimal control moves for nonlinear MPC controllers.

For information on generating data structures for mpcmoveCodeGeneration, see
getCodeGenerationData.

[coreData,onlineData] = getCodeGenerationData(nlobj,x,lastMV) creates data
structures for use with nlmpcmoveCodeGeneration.

[coreData,onlineData] = getCodeGenerationData(nlobj,x,lastMV,params) copies
initial parameter values in the onlineData structure if nlobj is an nlmpc object. If nlobj is an
nlmpcMultistage object then passing the params argument is not allowed and you have to
manually specify the initial guesses in the InitialGuess field of onlineData instead.

[1 = getCodeGenerationData(__ ,field) enables the specified online weight or
constraint field by adding it to the onlineData structure.

[1 = getCodeGenerationData(,fieldl,...,fieldn) enables multiple online weight
or constraint fields by adding them to the onlineData structure.

Examples

Create Nonlinear MPC Code Generation Structures

Create a nonlinear MPC controller with four states, two outputs, and one input.

nlobj = nlmpc(4,2,1);

In standard cost function, zero weights are applied by default to one or more 0Vs because there :
Specify the sample time and horizons of the controller.

Ts = 0.1;

nlobj.Ts = Ts;

nlobj.PredictionHorizon = 10;
nlobj.ControlHorizon = 5;

2-49

2 Functions

2-50

Specify the state function for the controller, which is in the file pendulumDTO.m. This discrete-time
model integrates the continuous-time model defined in pendulumCTO.m using a multistep forward
Euler method.

nlobj.Model.StateFcn = "pendulumDTO";
nlobj.Model.IsContinuousTime = false;

The prediction model uses an optional parameter Ts to represent the sample time. Specify the
number of parameters and create a parameter vector.

nlobj.Model.NumberOfParameters = 1;
params = {Ts};

Specify the output function of the model, passing the sample time parameter as an input argument.
nlobj.Model.OutputFcn = "pendulumOutputFcn";
Define standard constraints for the controller.

nlobj.Weights.OutputVariables = [3 3];
nlobj.Weights.ManipulatedVariablesRate = 0.1;

nlobj.0V(1l).Min = -10;
nlobj.0V(1l).Max = 10;
nlobj.MV.Min -100;

nlobj.MV.Max 100;

Validate the prediction model functions.
X0 [0.1;0.2;-pi/2;0.3];

ud = 0.4;
validateFcns(nlobj,x0,u®,[],params);

Model.StateFcn is OK.
Model.OQutputFcn is OK.
Analysis of user-provided model, cost, and constraint functions complete.

Only two of the plant states are measurable. Therefore, create an extended Kalman filter for
estimating the four plant states. Its state transition function is defined in pendulumStateFcn.m and
its measurement function is defined in pendulumMeasurementFcn.m.

EKF = extendedKalmanFilter(@pendulumStateFcn,@pendulumMeasurementFcn);

Define initial conditions for the simulation, initialize the extended Kalman filter state, and specify a
zero initial manipulated variable value.

X0 = [0;0;-pi;0];
y0 [x0(1);x0(3)];
EKF.State = x0;
mvl = 0;

Create code generation data structures for the controller, specifying the initial conditions and
parameters.

[coreData,onlineData] = getCodeGenerationData(nlobj,x0,mv0,params);
View the online data structure.

onlineData

getCodeGenerationData

onlineData = struct with fields:
ref: [0 O]
MVTarget: 0O
Parameters: {[0.1000]}
X0: [10x4 double]
MVO: [10x1 double]
Slack0: 0

If your application uses online weights or constraints, you must add corresponding fields to the code
generation data structures. For example, the following syntax creates data structures that include
fields for output variable tuning weights, manipulated variable tuning weights, and manipulated
variable bounds.

[coreData2,onlineData2] = getCodeGenerationData(nlobj,x0,mv0,params,...
'OutputWeights', '"MVWeights', '"MVMin', '"MVMax"');

View the online data structure. At run time, specify the online weights and constraints in the added
structure fields.

onlineData2

onlineData2 = struct with fields:
ref: [0 O]
MVTarget: 0O
Parameters: {[0.1000]}
X0: [10x4 double]

MVO: [10x1 double]
SlackO: 0
OutputWeights: [3 3]
MVWeights: 0O
MVMin: [10x1 double]
MVMax: [10x1 double]

Input Arguments

nlobj — Nonlinear model predictive controller
nlmpc object | nlmpcMultistage object

Nonlinear model predictive controller, specified as an nlmpc or nlmpcMultistage object.

x — Initial states of nonlinear prediction model
column vector of length N,

Initial states of the nonlinear prediction model, specified as a column vector of length N,, where N, is
the number of prediction model states.

lastMV — Initial manipulated variable control signals
column vector of length N,

Initial manipulated variable control signals, specified as a column vector of length N,,,, where N,,, is
the number of manipulated variables.

params — Initial parameter values for non multistage MPC
cell vector

2-51

2 Functions

2-52

Initial parameter values for non multistage MPC, specified as a cell vector with length equal to
nlobj.Model.NumberOfParameters, which is the number of optional parameters in the controller
prediction model. If the controller has no optional parameters, specify params as {}.

If nlobj is an nlmpc object then the initial values specified in params are copied into the
onlineData structure. If nlobj is an nlmpcMultistage object then the params argument is not
allowed and you have to manually specify the initial guesses in the InitialGuess field of
onlineData instead.

For more information on optional prediction model parameters, see “Specify Prediction Model for
Nonlinear MPC”.

field — Online weight or constraint field name
string | character vector

Online weight or constraint field name, specified as a string or character vector. When creating data
structures for nlmpcmoveCodeGeneration, you can add any of the following fields to the
onlineData output structure. Add a given field to the online data structure only if you expect the
corresponding weight or constraint to vary at run time.

Online Constraints

* "StateMin" — State lower bounds

* "StateMax" — State upper bounds

¢ "MVMin" — Manipulated variable lower bounds

* "MVMax" — Manipulated variable upper bounds

* "MVRateMin" — Manipulated variable rate of change lower bound
* "MVRateMax" — Manipulated variable rate of change upper bound

Online constraints and Tuning Weights for non-Multistage MPC

¢ "QutputWeights" — Output variable weights

* "MVWeights" — Manipulated variable weights

*+ "MVRateWeights" — Manipulated variable rate weights
* "ECRWeight" — Slack variable weight

e "QutputMin" — Output variable lower bounds

* "QutputMax" — Output variable upper bounds

Disturbances, Parameters, and Initial Guesses for Multistage MPC

* "MeasuredDistrubance" — Measured disturbances

* "StateParameter" — Parameter vector for state function and Jacobians

* "StageParameter" — Parameter vector for stage cost, constraints, and Jacobians
*+ "TerminalState" — Terminal state constraint

 "InitialGuess" — Initial guesses for decision variables

Output Arguments

coreData — Nonlinear MPC configuration parameters
structure

getCodeGenerationData

Nonlinear MPC configuration parameters that are constant at run time, returned as a structure.
These parameters are derived from the controller settings in nlobj. When simulating your controller,
pass coreData to nlmpcmoveCodeGeneration without changing any parameters.

onlineData — Online nonlinear MPC controller data
structure

Run-time simulation data, returned as a structure. The fields in the structure depend on whether
nlobj is an nlmpc object or an nlmpcMultistage object. During a simulation, you must supply this
structure as an input to nlmpcmoveCodeGeneration at every control interval.
nlmpcmoveCodeGeneration then returns as output the updated structure that you will need to
supply as input in the following control interval.

Non-Multistage MPC — Structure for generic MPC controllers
structure

For nlmpc objects, the structure always contains the following fields.

Field Description

ref Output reference values, returned as a column vector of zeros with length
N,, where N, is the number of prediction model outputs.

mvTarget Manipulated variable reference values, returned as a column vector of zeros
with length N,,,, where N,,, is the number of manipulated variables.

X0 Initial guess for the state trajectory, returned as a column vector equal to x.

MVO Initial guess for the manipulated variable trajectory, returned as a column

vector equal to LastMV.

Slacko Initial guess for the slack variable, returned as zero.

For nlmpc objects, onlineData can also contain the following fields, depending on the controller
configuration and argument values.

Field Description

md Measured disturbance values — This field is returned only when the
controller has measured disturbance inputs, that is, when
nlobj.Dimensions.MDIndex is nonzero. md is returned as a column
vector of zeros with length N,,4, where N,,; is the number of measured

disturbances.

Parameters Parameter values — This field is returned only when the controller uses
optional model parameters. Parameters is returned as a cell vector equal
to params.

2-53

2 Functions

2-54

Field

Description

* OutputWeights
* MVWeights

* MVRateWeights
*+ ECRWeight

e QutputMin

e QutputMax

+ StateMin

* StateMax

* MVMin

* MVMax

* MVRateMin

¢ MVRateMax

Weight and constraint values — Each field is returned only when the
corresponding field name is specified using the field argument. The value
of each field is equal to the corresponding default value defined in the
controller, as returned in coreData.

For more information on configuring onlineData fields, see nlmpcmoveCodeGeneration.

Multistage MPC — Structure for multistage MPC controllers

structure

For nlmpcMultistage objects, the returned onlineData structure always contains the

InitialGuess field.

Field

Description

InitialGuess

Initial guess for the decision variables, returned as a column vector of
length equal to the sum of the lengths of all the decision variable vectors for
each stage. For more information, see nlmpcmove.

For nlmpcMultistage objects, onlineData can also contain the following fields, depending on the
controller configuration and argument values.

Field Description

MeasuredDisturbanc [Measured disturbance values — This field is returned only when the

es controller has measured disturbance inputs, that is, when
nlobj.Dimensions.MDIndex is nonzero. md is returned as a column
vector of zeros with length N4, where N,,; is the number of measured
disturbances.

StateFcnParameters |Parameter values for state functions and Jacobians — This field is returned
only when the controller state prediction function or its Jacobian use model
parameters, that is when Model.ParameterLength is greater than zero.
StateFcnParameter is returned as a vector.

StageFcnParameters |Parameter values for stage cost and constraints functions and their

Jacobians— This field is returned only when any stage cost or constraint
function, or its Jacobian, uses parameters, that is when there is at least one
stage i for which Stages (i) .ParameterLength is greater than zero.
StageFcnParameter is returned as a vector.

getCodeGenerationData

* MVRateMin
¢ MVRateMax

Field Description

+ StateMin Constraint values — Each field is returned only when the corresponding

« StateMax field name is specified using the field argument. The value of each field is
) equal to the corresponding default value defined in the controller, as

* MVMin returned in coreData.

* MVMax

TerminalState

Terminal state, returned as a column vector with as many elements as the
number of states. The terminal state is the desired state at the last
prediction step. To specify desired terminal states at run-time via this field,
you must specify finite values in the TerminalState field of the Model
property of nlobj. Specify inf for the states that do not need to be
constrained to a terminal value. At run time, nlmpcmoveCodeGeneration
ignores any values in the TerminalState field of simdata that correspond
to inf values in nlobj. If you do not specify any terminal value condition in
nlobj, this field is not created in onlinedata.

For more information on configuring onlineData fields, see nlmpcmoveand
nlmpcmoveCodeGeneration.

See Also

validateFcns | nlmpcmove | getSimulationData | nlmpcmoveCodeGeneration

Topics

“Generate Code to Compute Optimal MPC Moves in MATLAB”
“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2020a

2-55

2 Functions

2-56

getconstraint

Obtain mixed input/output constraints from model predictive controller

Syntax

[E,F,G,V,S] = getconstraint (MPCobj)

Description
[E,F,G,V,S] = getconstraint (MPCobj) returns the mixed-input/output constraints previously

defined for the MPC controller, MPCobj. For more information, see “Mixed Input/Output Constraints”
on page 2-58.

Examples

Retrieve Custom Constraints from MPC Controller

Create a third-order plant model with two manipulated variables, one measured disturbance, and two
measured outputs.

plant = rss(3,2,3);
plant.D = 0;
plant = setmpcsignals(plant, 'mv',[1 2],'md"',3);

Create an MPC controller for this plant.
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Assume that you have two soft constraints.

up+upy<5
y+vs=s10

Set the constraints for the MPC controller.

E=1[11; 0 0];

F=100; 01];

G = [5;10];

vV =1[1;1];

S = [0;1];

setconstraint (MPCobj,E,F,G,V,S)

Retrieve the constraints from the controller.

[E,F,G,V,S] = getconstraint(MPCobj)

getconstraint

E = 2x2

F = 2x2

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.
Output Arguments

E — Manipulated variable constraint constant
N(?'bY'va array | []

Manipulated variable constraint constant, returned as an N,by-N,,, array, where N, is the number of
constraints, and N,,, is the number of manipulated variables.

If MPCobj has no mixed input/output constraints, then Eis [].

F — Controlled output constraint constant
Nyby-N, array | []

Controlled output constraint constant, returned as an N-by-N,, array, where N is the number of
controlled outputs (measured and unmeasured).

If MPCobj has no mixed input/output constraints, then Fis [].

2-57

2 Functions

2-58

G — Mixed input/output constraint constant
column vector of length N, | []

Mixed input/output constraint constant, returned as a column vector of length N,., where N, is the
number of constraints.

If MPCobj has no mixed input/output constraints, then Gis [].

V — Constraint softening constant
column vector of length N | []

Constraint softening constant representing the equal concern for the relaxation (ECR), returned as a
column vector of length N, where N, is the number of constraints. If MPCobj has no mixed input/
output constraints, then Vis [].

If V is not specified, a default value of 1 is applied to all constraint inequalities and all constraints are
soft. This behavior is the same as the default behavior for output bounds, as described in “Standard
Cost Function”.

To make the i* constraint hard, specify V(i) = 0.

To make the i™ constraint soft, specify V(i) > 0 in keeping with the constraint violation magnitude you
can tolerate. The magnitude violation depends on the numerical scale of the variables involved in the
constraint.

In general, as V(i) decreases, the controller hardens the constraints by decreasing the constraint
violation that is allowed.

S — Measured disturbance constraint constant
N by-N, array | []

Measured disturbance constraint constant, returned as an Nby-N, array, where N, is the number of
measured disturbances.

If there are no measured disturbances in the mixed input/output constraints, or MPCobj has no mixed
input/output constraints, then Sis [].

Algorithms
Mixed Input/Output Constraints

The general form of the mixed input/output constraints is:
Euk +j)+ Fy(k +j) + Sv(k +j) =G + ¢V

Here, j = 0,...,p, and:

* pis the prediction horizon.

* kis the current time index.

* uis a column vector manipulated variables.

* yis a column vector of all plant output variables.

* vis a column vector of measured disturbance variables.

* ¢ is a scalar slack variable used for constraint softening (as in “Standard Cost Function”).

getconstraint

« E,F,G,V,and S are constant matrices.

Since the MPC controller does not optimize u(k+p), getconstraint calculates the last constraint at
time k+p assuming that u(k+p) = u(k+p-1).

See Also

setconstraint

Topics
“Constraints on Linear Combinations of Inputs and Outputs”

Introduced in R2011a

2-59

2 Functions

2-60

getEstimator

Obtain Kalman gains and model for estimator design

Syntax

[L,M] = getEstimator(MPCobj)
[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj)
[L,M,model,index] = getEstimator(MPCobj, 'sys"')

Description

[L,M] = getEstimator(MPCobj) extracts the Kalman gains used by the state estimator in a
model predictive controller. The estimator updates the states of internal plant, disturbance, and noise
models at the beginning of each controller interval.

[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj) also returns the system matrices used to
calculate the estimator gains.

[L,M,model,index] = getEstimator(MPCobj, 'sys') returns an LTI state-space
representation of the system used for state-estimator design and a structure summarizing the I/O
signal types of the system.

Examples

Extract Parameters for State Estimation

The plant is a stable, discrete LTI state-space model with four states, three inputs, and three outputs.
The manipulated variables are inputs 1 and 2. Input 3 is an unmeasured disturbance. Outputs 1 and 3
are measured. Output 2 is unmeasured.

Create a model of the plant and specify the signals for MPC.

rng(1253) % For repeatable results

Plant = drss(4,3,3);

Plant.Ts = 0.25;

Plant = setmpcsignals(Plant, 'MV',[1,2],'UD',3,'MO"',[1 3],'U0", 2);
Plant.d(:,[1,2]) = 0;

The last command forces the plant to satisfy the assumption of no direct feedthrough.

Calculate the default model predictive controller for this plant.
MPCobj = mpc(Plant);

-->The "PredictionHorizon" property is empty. Assuming default 10.
-->The "ControlHorizon" property is empty. Assuming default 2.
-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

for output(s) yl y3 and zero weight for output(s) y2

getEstimator

Obtain the parameters to be used in state estimation.
[L,M,A,Cm,Bu,Bv,Dvm] = getEstimator(MPCobj);
-->The "Model.Disturbance" property is empty:
Assuming unmeasured input disturbance #3 is integrated white noise.
-->Assuming output disturbance added to measured output channel #1 is integrated white noise.

Assuming no disturbance added to measured output channel #3.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Based on the estimator state equation, the estimator poles are given by the eigenvalues of A - L*Cm.
Calculate and display the poles.

Poles = eig(A - L*Cm)
Poles = 6x1
-0.7467
-0.5019
0.0769
0.4850
0.8825
0.8291
Confirm that the default estimator is asymptotically stable.

max (abs(Poles))

ans = 0.8825
This value is less than 1, so the estimator is asymptotically stable.

Verify that in this case, L = A*M.

L - A*M
ans = 6x2
10»15 X

-0.1110 -0.2498
0.0139 0
0.0416 -0.0833
-0.0416 -0.0416
-0.0416 0.0833
-0.2498 0.0278

Input Arguments

MPCobj — MPC controller
MPC controller ohject

MPC controller, specified as an MPC controller object. Use the mpc command to create the MPC
controller.

2-61

2 Functions

2-62

Output Arguments

L — Kalman gain matrix for time update
matrix

Kalman gain matrix for the time update, returned as a matrix. The dimensions of L are n,-by-n,,,
where n, is the total number of controller states, and ny,, is the number of measured outputs.

M — Kalman gain matrix for measurement update
matrix

Kalman gain matrix for the measurement update, returned as a matrix. The dimensions of L are n,-by-
ny,, where n, is the total number of controller states, and n,,, is the number of measured outputs.

A,Cm,Bu,Bv,Dvm — System matrices
matrices

System matrices used to calculate the estimator gains, returned as matrices of various dimensions.
For definitions of these system matrices, see “State Estimator Equations” on page 2-63.

model — System used for state-estimator design
state-space model

System used for state-estimator design, returned as a state-space (ss) model. The input to model is a
vector signal comprising the following components, concatenated in the following order:

* Manipulated variables

* Measured disturbance variables

o 1

* Noise inputs to disturbance models

* Noise inputs to measurement noise model

The number of noise inputs depends on the disturbance and measurement noise models within
MPCobj. For the category noise inputs to disturbance models, inputs to the input disturbance model
(if any) precede those entering the output disturbance model (if any). The constant input, 1, accounts
for nonequilibrium nominal values (see “MPC Prediction Models”).

To make the calculation of gains L and M more robust, additive white noise inputs are assumed to
affect the manipulated variables and measured disturbances (see “Controller State Estimation”).
These white noise inputs are not included in model.

index — Locations of variables within model
structure

Locations of variables within the inputs and outputs of model. The structure summarizes these
locations with the following fields and values.

Field Name Value

ManipulatedVariables Indices of manipulated variables within the input
vector of model.

MeasuredDisturbances Indices of measured input disturbances within
the input vector of model.

getEstimator

Field Name Value

Offset Index of the constant input 1 within the input
vector of model.

WhiteNoise Indices of unmeasured disturbance inputs within
the input vector of model.

MeasuredOutputs Indices of measured outputs within the output
vector of model.

UmeasuredOutputs Indices of unmeasured outputs within the output
vector of model.

Algorithms
State Estimator Equations

In general, the controller states are unmeasured and must be estimated. By default, the controller
uses a steady-state Kalman filter that derives from the state observer. For more information, see
“Controller State Estimation”.

At the beginning of the kth control interval, the controller state is estimated with the following steps:
1 Obtain the following data:

* x.(k|k-1) — Controller state estimate from previous control interval, k-1

* u®(k-1) — Manipulated variable (MV) actually used in the plant from k-1 to k (assumed
constant)

o u°(k-1) — Optimal MV recommended by MPC and assumed to be used in the plant from k-1
to k

¢ y(k) — Current measured disturbances

* Yn() — Current measured plant outputs

* B, B, — Columns of observer parameter B corresponding to u(k) and v(k) inputs
* C,, — Rows of observer parameter C corresponding to measured plant outputs

* D, — Rows and columns of observer parameter D corresponding to measured plant outputs
and measured disturbance inputs

* L, M — Constant Kalman gain matrices

Plant input and output signals are scaled to be dimensionless prior to use in calculations.
2 Revise x,(k|k-1) when u?(k-1) and u°’(k-1) are different.

XV (k [k = 1) = xg(k [k = 1) + By[u®t(k — 1) — u%Pi(k - 1)]

3 Compute the innovation.

e(k) = ym(k) = [Cmxc® (K |k = 1) + Dpyv(K)]

4 Update the controller state estimate to account for the latest measurements.

xc(k |k) = xC€¥(k |k — 1) + Me(k)

2-63

2 Functions

2-64

Then, the software uses the current state estimate x,(k|k) to solve the quadratic program at
interval k. The solution is u°!(k), the MPC-recommended manipulated-variable value to be used
between control intervals k and k+1.

Finally, the software prepares for the next control interval assuming that the unknown inputs,
wiy(k), wyy(k), and w,(k) assume their mean value (zero) between times k and k+1. The software
predicts the impact of the known inputs and the innovation as follows:

xe(k + 1|k) = Ax5®V(k |k — 1) + Byu®Pt(k) + Byv(k) + Le(k)
See Also
setEstimator | getindist | getoutdist | mpc | mpcstate
Topics

“Controller State Estimation”
“MPC Prediction Models”

Introduced in R2014b

getindist

getindist

Retrieve unmeasured input disturbance model

Syntax

indist = getindist(MPCobj)
[indist, channels] = getindist(MPCobj)

Description

indist = getindist(MPCobj) returns the input disturbance model, indist, used by the model
predictive controller, MPCobj.

[indist,channels] = getindist(MPCobj) also returns the input channels to which integrated
white noise has been added by default. For more information on the default model, see “MPC
Prediction Models”.

Examples

Retrieve Input Disturbance Model

Define a plant model with no direct feedthrough.

plant = rss(3,1,2);

plant.D = 0;

Set the first input signal as a manipulated variable and the second input as an unmeasured
disturbance.

plant = setmpcsignals(plant, 'MV',[1],'UD"',[2]);
Create an MPC controller for the defined plant.
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the input disturbance model.
indist = getindist(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

2-65

2 Functions

2-66

Retrieve Input Disturbance Model Channels with Default Integrated White Noise

Define a plant model with no direct feedthrough.

plant = rss(3,1,3);
plant.D = 0;

Set the first input signal as a manipulated variable and the other two inputs as unmeasured
disturbances.

plant = setmpcsignals(plant, 'MV',[1],'UD',[2 3]);
Create an MPC controller for the defined plant.
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the default output disturbance model.
[indist,channels] = getindist(MPCobj);

-->Converting model to discrete time.
-->The "Model.Disturbance" property is empty:
Assuming unmeasured input disturbance #2 is integrated white noise.
Assuming unmeasured input disturbance #3 is white noise.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Check which input disturbance channels have integrated white noise added by default.
channels

channels =1

An integrator has been added only to the first unmeasured input disturbance. The other input
disturbance uses a static unity gain to preserve state observability.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments

indist — Input disturbance model
discrete-time, delay-free, state-space model

getindist

Input disturbance model used by the model predictive controller, MPCobj, returned as a discrete-
time, delay-free, state-space model.

The input disturbance model has:

» Unit-variance white noise input signals. By default, the number of inputs depends upon the
number of unmeasured input disturbances and the need to maintain controller state observability.
For custom input disturbance models, the number of inputs is your choice.

* nyoutputs, where n, is the number of unmeasured disturbance inputs defined in
MPCobj .Model.Plant. Each disturbance model output is sent to the corresponding plant
unmeasured disturbance input.

If MPCobj does not have any unmeasured disturbance, indist is returned as an empty state-space
model.

This model, in combination with the output disturbance model (if any), governs how well the
controller compensates for unmeasured disturbances and modeling errors. For more information on
the disturbance modeling in MPC and about the model used during state estimation, see “MPC
Prediction Models” and “Controller State Estimation”.

channels — Input channels with integrated white noise
vector of input indices

Input channels with integrated white noise added by default, returned as a vector of input indices. If
you set indist to a custom input disturbance model using setindist, channels is empty.

Tips

* To specify a custom input disturbance model, use the setindist command.

See Also
mpc | setindist | getoutdist | setEstimator | getEstimator
Topics

“MPC Prediction Models”
“Controller State Estimation”

Introduced in R2006a

2-67

2 Functions

2-68

getname

Retrieve 1/O signal names from MPC plant model

Syntax

name = getname(MPCobj, 'input',i)
name getname (MPCobj, 'output',i)

Description

name = getname(MPCobj, 'input', i) returns the name of the ith input signal of the plant model
in MPCobj. This is equivalent to name = MPCobj.Model.Plant.InputName{i}.

name = getname(MPCobj, 'output', i) returns the name of the ith output signal in variable

name. This is equivalent to name=MPCobj .Model.Plant.OutputName{i}.

Examples

Get names of input and output signals from MPC object

Create a plant and an MPC object, and then retrieve the names of some input and output signals.
mpcverbosity off; % turn off mpc messages

% create plant model

plant = rss(4,4,4);
plant.D = 0;

random state space
set D matrix to zero

o° o°

% set signals type in plant model
plant = setmpcsignals(plant,'MV',1,'MD',3,'UD"',4,'MO",1,"'U0",[3 41);

% create MPC object
mpcobj=mpc(plant,1);

o°

sampling time = 1 second
Get names of input signals

% get input signal names

getname(mpcobj, "input',1) % get name of first input signal
ans =

'MV1'
getname(mpcobj, "input',2) % get name of second input signal
ans =

'MV2'
getname(mpcobj, "input"',3) % get name of third input signal
ans =

'MD1'
getname(mpcobj, 'input',4) % get name of fourth input signal

getname

ans =
‘ubl’

Get names of output signals

% get output signal names
getname(mpcobj, 'output',1)
ans =

'MO1'

getname(mpcobj, 'output',2)
ans =
'M02'

getname(mpcobj, 'output’,3)
ans =
'uol’

getname(mpcobj, 'output',4)
ans =
'uo2!

% alternative ways to retrieve names
mpcobj.Model.Plant.InputName{2}
ans =

"Mv2'!

mpcobj .ManipulatedVariables(2) .Name
ans =
"MV2'

mpcobj .Model.Plant.InputName{4}
ans =
'ubt!

mpcobj .DisturbanceVariables(2) .Name
ans =
'ubt!

mpcobj .Model.Plant.OutputName{4}
ans =
'uo2’

mpcobj.OutputVariables(4) .Name
ans =
'uo2’

o°

o°

o°

o°

o°

o°

o°

o°

o°

o°

get name of first output signal

get name of second output signal

get name of third output signal

get name of fourth output signal

second

second

fourth

second

fourth

fourth

plant input

manipulated variable

plant input

disturbance variable

plant output

plant variable name

Note that signals not specified with setmpcsignals are assumed to be measured inputs (for non-
specified inputs) or measured outputs (for non-specified outputs).

Input Arguments

MPCobj — Model predictive controller
MPC controller ohject

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use

mpc.

2-69

2 Functions

2-70

i — Signal number selection
"integer' greater than zero

This integer specify that the name of the ith signal needs to be retrieved.

Signal number to be retrieved.

Example: 2

Output Arguments

name — Signal name
character array

This character array is the name of the ith input or output signal (and it does not affect whether the
signal is categorized as a manipulated variable, measured or unmeasured disturbance, measured or
unmeasured output).

For input signals, this is the content of MPCobj .Model.Plant.InputName{i}, while for output
signals, this is the content of MPCobj .Model.Plant.OutputName{i}.

If the specified signal is a manipulated variable, this field is typically 'MV1', 'MV2', and so on, up to
the number of manipulated variables, unless specifically set otherwise. This is also identical to the
content of the Name field of the corresponding structure in MPCobj.ManipulatedVariables.

If the specified signal is a disturbance input, this field is typically 'MD1', 'MD2', and so on, up to the
number of measured disturbance variables, or 'UD1"', 'UD2"', and so on, up to the number of
unmeasured disturbance variables, unless specifically set otherwise. This is also the content of the
corresponding Name field of MPCobj.DisturbanceVariables.

If the specified signal is a output signal, this field is typically 'M01"', 'M0O2"', and so on, up to the
number of measured output variables, or 'U01"', 'U02', and so on, up to the number of unmeasured
output variables, unless specifically set otherwise. This is also the content of the corresponding Name
field of MPCobj.OutputVariables.

See Also
setname | mpc | setmpcsignals | set

Introduced before R2006a

getoutdist

getoutdist

Retrieve unmeasured output disturbance model

Syntax

outdist = getoutdist(MPCobj)
[outdist,channels] = getoutdist(MPCobj)

Description

outdist = getoutdist(MPCobj) returns the output disturbance model, outdist, used by the
model predictive controller, MPCobj.

[outdist,channels] = getoutdist(MPCobj) also returns the output channels to which
integrated white noise has been added by default. For more information on the default model, see
“MPC Prediction Models”.

Examples

Retrieve Output Disturbance Model

Define a plant model with no direct feedthrough, and create an MPC controller for that plant.

plant = rss(3,2,2);
plant.D = 0;
MPCobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the output disturbance model.
outdist = getoutdist(MPCobj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Retrieve Output Disturbance Model Channels with Default Integrated White Noise

Define a plant model with no direct feedthrough, and create an MPC controller for that plant.
plant = rss(3,3,3);

plant.d = 0;
MPCobj = mpc(plant,0.1);

2-71

2 Functions

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Extract the default output disturbance model.
[outdist,channels] = getoutdist(MPCobj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->Assuming output disturbance added to measured output channel #2 is integrated white noise.
-->Assuming output disturbance added to measured output channel #3 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Check which channels have default integrated white noise disturbances.
channels
channels = 1Ix3

1 2 3

Integrators have been added to all three output channels.

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

Output Arguments

outdist — Output disturbance model
discrete-time, delay-free, state-space model

Output disturbance model used by the model predictive controller, MPCobj, returned as a discrete-
time, delay-free, state-space model.

The output disturbance model has:

 n,outputs, where n, is the number of plant outputs defined in MPCobj .Model.Plant. Each
disturbance model output is added to the corresponding plant output. By default, disturbance
models corresponding to unmeasured output channels are zero.

* Unit-variance white noise input signals. By default, the number of inputs is equal to the number of
default integrators added.

This model, in combination with the input disturbance model (if any), governs how well the controller
compensates for unmeasured disturbances and modeling errors. For more information on the
disturbance modeling in MPC and about the model used during state estimation, see “MPC Prediction
Models” and “Controller State Estimation”.

2-72

getoutdist

channels — Output channels with integrated white noise
vector of output indices

Output channels with integrated white noise added by default, returned as a vector of output indices.
If you set outdist to a custom output disturbance model using setoutdist, channels is empty.

Tips

» To specify a custom output disturbance model, use the setoutdist command.

See Also
mpc | setoutdist | getindist | setEstimator | getEstimator
Topics

“MPC Prediction Models”
“Controller State Estimation”

Introduced before R2006a

2-73

2 Functions

2-74

getSimulationData

Create data structure to simulate multistage MPC controller with nlmpcmove

Syntax

simdata = getSimulationData(nlmpcMSobj)

Description

Use this function to create a default data structure to simulate a multistage MPC controller with the
nlmpcmove function.

For information on generating data structures for mpcmoveCodeGeneration, see
getCodeGenerationData.

simdata = getSimulationData(nlmpcMSobj) creates an initial simulation data structure for use
with nlmpcmove.

Examples

Simulate Multistage Nonlinear MPC Controller Using Initial Guesses

This example shows how to create and simulate a simple multistage MPC controller in closed loop
using initial guesses, with the MATLAB® function nlmpcmove.

Create Multistage MPC Controller

Create a multistage MPC object with a seven-steps horizon, one state, and one manipulated variable.
nlmsobj = nlmpcMultistage(7,1,1);

Specify the state transition function for the prediction model (mystatefcn is defined at the end of
this example).

nlmsobj.Model.StateFcn = @mystatefcn;

As a best practice, use Jacobians whenever they are available, otherwise the solver must compute it
numerically.

Specify the Jacobian of the state transition function (mystatejacobian is defined at the end of the
file).

nlmsobj.Model.StateJacFcn = @mystatejac;
Specify the cost functions for all stages except the first (mycostfcn is defined at the end of the file).
for i=2:8

nlmsobj.Stages(i).CostFcn = @mycostfcn;
end

getSimulationData

Define Initial Conditions, Create Data Structure, and Validate Functions

Initialize the plant state and input.

x=3;
mv=0;

Create the initial simulation data structure.
simdata = getSimulationData(nlmsobj)

simdata = struct with fields:
InitialGuess: []

Validate functions and the data structure.
validateFcns(nlmsobj,x,mv,simdata);

Model.StateFcn is OK.
Model.StateJacFcn is OK.
"CostFcn" of the following stages [2 3 45 6 7 8] are OK.

Analysis of user-provided model, cost, and constraint functions complete.

Simulate Controller in Closed Loop

Simulate the control loop for 5 steps.

for k=1:5
[mv,simdata] = nlmpcmove(nlmsobj, x, mv, simdata);
[~,xhist] = ode45(@(t,xode) mystatefcn(xode,mv),[0 nlmsobj.Ts],x);
X = xhist(end);

end

)
s C
)
% S
)
s U

Since updated initial guesses are supplied as an input argument within the simdata structure,
nlmpcmove does not need to recalculate them at each time step, which saves computation time and

improves performance. Updating initial guesses at every time step is a best practice.
Display the last values of the state and manipulated variables.

disp(['Final value of x =' num2str(x)])

Final value of x =-0.039545

disp(['Final value of mv =' num2str(mv)])

Final value of mv =-0.066672

Support Functions

State transition function.

function xdot = mystatefcn(x,u)

xdot = u-sin(x);
end

Jacobian of the state transition function.

function [A,B] = mystatejac(x,~)
A = -cos(x);

2-75

alculate move and upd
imulate plant for one
pdate plant state

2 Functions

2-76

B =1;

Stage cost functions.

function j = mycostfcn(s,x,u)
j = abs(u)/s+s*x"2;
end

Input Arguments

nlmpcMSobj — Nonlinear Multistage MPC controller
nlmpcMultistage object

Multistage nonlinear MPC controller, specified as an nlmpcMultistage object.

Output Arguments

simdata — Run-time simulation data structure
structure

Run-time simulation data, specified as a structure with the following fields.

MeasuredDisturbance — Measured disturbance values
[1 (default) | row vector | array

Measured disturbance values, specified as a row vector of length N,,4 or an array with N,,; columns,
where N,,4 is the number of measured disturbances. If your multistage MPC object has any measured
disturbance channel defined, you must specify MeasuredDisturbance. If your controller has no
measured disturbances, you can omit this field in the structure or specify itas [].

To use the same disturbance values across the prediction horizon, specify a row vector.

To vary the disturbance values over the prediction horizon from time k to time k+p, specify an array
with up to p+1 rows. Here, k is the current time and p is the prediction horizon. Each row contains
the disturbance values for one prediction horizon step. If you specify fewer than p rows, nlmpcmove
uses the values in the final row for the remaining steps of the prediction horizon.

If you define measured disturbances in the input object, you must provide them via simdata at run-
time.

MVMin — Manipulated variable lower bounds
[1 (default) | row vector | matrix

Manipulated variable lower bounds, specified as a row vector of length N,,,, or a matrix with N,
columns, where N,,, is the number of manipulated variables. MVMin(:, 1) replaces the
ManipulatedVariables (i) .Min property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

getSimulationData

If simdata does not contain a MVMin field, then the manipulated variable lower bound (if present in
the input object) does not change at run time.

MVMax — Manipulated variable upper bounds
[1 (default) | row vector | matrix

Manipulated variable upper bounds, specified as a row vector of length N,,,, or a matrix with N,
columns, where N,,,, is the number of manipulated variables. MVMax (: , 1) replaces the
ManipulatedVariables (i) .Max property of the controller at run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a MVMax field, then the manipulated variable upper bound (if present in
the input object) does not change at run time.

MVRateMin — Manipulated variable rate lower bounds
[] (default) | row vector | matrix

Manipulated variable rate lower bounds, specified as a row vector of length N,,, or a matrix with N,,,
columns, where N,,, is the number of manipulated variables. MVRateMin(:, i) replaces the
ManipulatedVariables (i) .RateMin property of the controller at run time. MVRateMin bounds
must be nonpositive.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a MVRateMin field, then the manipulated variable rate lower bound (if
present in the input object) does not change at run time.

MVRateMax — Manipulated variable rate upper bounds
[1 (default) | row vector | matrix

Manipulated variable rate upper bounds, specified as a row vector of length N,,,, or a matrix with N,,,
columns, where N,,, is the number of manipulated variables. MVRateMax(:, i) replaces the
ManipulatedVariables (i) .RateMax property of the controller at run time. MVRateMax bounds
must be nonnegative.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k to time k+p-1, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a MVRateMax field, then the manipulated variable rate upper bound (if
present in the input object) does not change at run time.

2-77

2 Functions

2-78

StateMin — State lower bounds
[] (default) | row vector | matrix

State lower bounds, specified as a row vector of length N, or a matrix with N, columns, where N, is
the number of states. StateMin(:,1i) replaces the States (i) .Min property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a StateMin field, then the state lower bound (if present in the input
object) does not change at run time.

StateMax — State upper bounds
[1 (default) | row vector | matrix

State upper bounds, specified as a row vector of length N, or a matrix with N, columns, where N, is
the number of states. StateMax(:,1i) replaces the States (i) .Max property of the controller at
run time.

To use the same bounds across the prediction horizon, specify a row vector.

To vary the bounds over the prediction horizon from time k+1 to time k+p, specify a matrix with up to
p rows. Here, k is the current time and p is the prediction horizon. Each row contains the bounds for
one prediction horizon step. If you specify fewer than p rows, the final bounds are used for the
remaining steps of the prediction horizon.

If simdata does not contain a StateMax field, then the state upper bound (if present in the input
object) does not change at run time.

StateFcnParameters — State function parameter values
[1 (default) | vector

State function parameter values, specified as a vector with length equal to the value of the
Model.ParameterLength property of the multistage controller object. If Model.StateFcn needs a
parameter vector, you must provide its value at runtime using this field, otherwise you can omit this
field or setitto [1].

StageFcnParameters — Stage function parameter values
[1 (default) | vector

Stage functions parameter values, specified as a vector with length equal to the sum of all the values
in the Stages (i) .ParameterLength properties of the multistage controller object. If any cost or
constraint function defined in the Stages property needs a parameter vector, you must provide all
the parameter vectors at runtime (stacked in a single column) using this field, otherwise you can omit
this field or set it to [1].

You must stack the parameter vectors for all stages in the column vector StageFcnParameters as
follows.

[parameter vector for stage 1;
parameter vector for stage 2;

getSimulationData

parameter vector for stage p+1;
1

TerminalState — Terminal state
[1 (default) | vector

Terminal state, specified as a column vector with as many elements as the number of states. The
terminal state is the desired state at the last prediction step. To specify desired terminal states at run-
time via this field, you must specify finite values in the TerminalState field of the Model property
of nlmpcMSobj. Specify inf for the states that you do not need to constrain to a terminal value. At
run time, nlmpcmove ignores any values in the TerminalState field of simdata that correspond to
inf values in nlmpcMSobj. If you do not specify any terminal value condition in nlmpcMSobj, this
field is not created in simdata.

If simdata does not contain a TerminalState field, then the terminal state constraint (if present in
the input object) does not change at run time.

InitialGuess — Initial guesses for the decision variables
[1 (default) | vector

Initial guesses for the decision variables, specified as a row vector of length equal to the sum of the
lengths of all the decision variable vectors for each stages.

You must be stack the initial guesses for all stages in the column vector InitialGuess as follows.

[state vector guess for stage 1;

manipulated variable vector guess for stage 1;

manipulated variable vector rate guess for stage 1; % if used
slack variable vector guess for stage 1; % if used

state vector guess for stage 2;

manipulated variable vector guess for stage 2;

manipulated variable vector rate guess for stage 2; % if used
slack variable vector guess for stage 2; % if used

state vector guess for stage p+l;

manipulated variable vector guess for stage p+1;

manipulated variable vector rate guess for stage p+l; % if used
slack variable vector guess for stage p+l; % if used

]

If InitialGuess is [], then nlmpcmove calculates the initial guesses from its x and lastmv
arguments.

In general, during closed-loop simulation, you do not specify InitialGuess yourself. Instead, when
calling nlmpcmove, return the simdata output argument, which contains the calculated initial
guesses for the next control interval. You can then pass simdata as an input argument to
nlmpcmove for the next control interval. These steps are a best practice, even if you do not specify
any other run-time options.

See Also

nlmpcMultistage | validateFcns | nlmpcmove | getCodeGenerationData |
nlmpcmoveCodeGeneration

Topics
“Nonlinear MPC”

2-79

2 Functions

“Trajectory Optimization and Control of Flying Robot Using Nonlinear MPC”

Introduced in R2021a

2-80

gpc2mpc

gpc2mpc

Generate MPC controller using generalized predictive controller (GPC) settings

Syntax

MPCobj = gpc2mpc(plant)
gpcOptions = gpc2mpc
MPCobj = gpc2mpc(plant,gpcOptions)

Description

MPCobj = gpc2mpc(plant) generates a single-input single-output MPC controller with default
GPC settings and sample time of the specified plant, plant. The GPC is a nonminimal state-space
representation described in “References” on page 2-83. plant is a discrete-time LTI model with
sample time greater than 0.

gpcOptions = gpc2mpc creates a structure gpcOptions containing default values of GPC settings.

MPCobj = gpc2mpc(plant,gpcOptions) generates an MPC controller using the GPC settings in
gpcOptions.

Examples

Design an MPC controller using GPC settings

Specify the plant described in Example 1.8 of
“References”.
= tf(9.8*%[1 -0.5 6.3],conv([1l 0.6565],[1 -0.2366 0.1493]));

@ o° o°

% Discretize the plant with sample time of 0.6 seconds.
0.6;
c2d(G, Ts);

o -

s
d
% Create a GPC settings structure.

GPCoptions = gpc2mpc;

Specify the GPC settings described in example 4.11 of

% “References”.

% Hu
GPCoptions.NU = 2;
% Hp
GPCoptions.N2 = 5;

% R
GPCoptions.Lam = 0;
GPCoptions.T = [1 -0.8];

% Convert GPC to an MPC controller.
mpc = gpc2mpc(Gd, GPCoptions);

% Simulate for 50 steps with unmeasured disturbance between

2-81

2 Functions

2-82

[)

% steps 26 and 28, and reference signal of 0.
SimOptions = mpcsimopt(mpc);

SimOptions.UnmeasuredDisturbance = [zeros(25,1);

-0.1*ones(3,1); 01;

sim(mpc, 50, 0, SimOptions);

Input Arguments

plant — plant model

single-output discrete-time ss, tf or zpk object

Single-output LTT model with sampling time greater than 0, and only one manipulated variable input.

Example: zpk([],-1,1)

gpcOptions — GPC settings

structure

GPC settings, specified as a structure with the following fields.

N1

N2

NU

Lam

MVindex

Output Arguments

Starting interval in prediction horizon, specified as a positive
integer.
Default: 1

Last interval in prediction horizon, specified as a positive integer
greater than N1.Default: 10

Control horizon, specified as a positive integer less than the
prediction horizon.

Default: 1

Penalty weight on changes in manipulated variable, specified as a
positive integer greater than or equal to 0.

Default: 0

Numerator of the GPC disturbance model, specified as a row
vector of polynomial coefficients whose roots lie within the unit
circle.

Default: [1].

Index of the manipulated variable for multi-input plants, specified
as a positive integer.

Default: 1

MPCobj — Model predictive controller

MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use

mpc.

gpc2mpc

Tips

* For plants with multiple inputs, only one input is the manipulated variable, and the remaining
inputs are measured disturbances in feedforward compensation. The plant output is the measured
output of the MPC controller.

* Use the MPC controller with Model Predictive Control Toolbox software for simulation and
analysis of the closed-loop performance.

References

[1] Maciejowski,]J. M. Predictive Control with Constraints, Pearson Education Ltd., 2002, pp. 133-
142,

See Also
mpc
Topics

“Design Controller Using MPC Designer”
“Design MPC Controller at the Command Line”

Introduced in R2010a

2-83

2 Functions

mpcActiveSetOptions

Create default option set for mpcActiveSetSolver

Syntax

options = mpcActiveSetOptions
options = mpcActiveSetOptions(type)
Description

options = mpcActiveSetOptions creates a structure of default options for
mpcActiveSetSolver, which solves a quadratic programming (QP) problem using an active-set
algorithm.

options = mpcActiveSetOptions(type) creates a default option set using the specified input
data type. All real options are specified using this data type.

Examples

Create Default Option Set for Active-Set QP Solver

Create a default option set.

opt = mpcActiveSetOptions;

Create and Modify Default Active-Set QP Solver Option Set
Create a default option set.

opt = mpcActiveSetOptions;

Specify the maximum number of iterations allowed during computation.
opt.MaxIterations = 100;

Specify a constraint tolerance for verifying that the optimal solution satisfies the inequality
constraints.

opt.ConstraintTolerance = 1.0e-4;

Create Active-Set Option Set Specifying Input Argument Type

Create a default option set, specifying the input argument type.

opt = mpcActiveSetOptions('single');

2-84

mpcActiveSetOptions

Input Arguments

type — Solver input argument data type
'double’ (default) | 'single’

Solver input argument data type, specified as either 'double' or 'single'. This data type is used
for both simulation and code generation. All real options in the option set are specified using this data

type, and all real input arguments to mpcActiveSetSolver must match this type.

Output Arguments

options — Option set for mpcActiveSetSolver

structure

Option set for mpcActiveSetSolver, returned as a structure with the following fields.

true, then integrity checks are performed and diagnostic messages are
displayed. Use false for code generation only.

Field Description Default
DataType |Input argument data type, specified as either 'double’ or 'single'. |'double’
This data type is used for both simulation and code generation, and all
real input arguments to the solver function must match this type.
MaxItera |[Maximum number of iterations allowed when computing the QP 200
tions solution, specified as a positive integer.
Constrai |Tolerance used to verify that inequality constraints are satisfied by the |le-6
ntTolera |optimal solution, specified as a positive scalar. A larger
nce ConstraintTolerance value allows for larger constraint violations.
UseHessi |Indicator of whether the first input argument to mpcActiveSetSolver |true
anAsInpu |is the Hessian matrix, specified as a logical value. If
t UseHessianAsInput is true, pass the Hessian matrix to
mpcActiveSetSolver. Otherwise, use the inverse of the lower-
triangular Cholesky decomposition (Linv) of the Hessian matrix.
If your application requires repetitive calls of mpcActiveSetSolver
using a constant Hessian matrix, you can improve computational
efficiency by passing Linv to mpcActiveSetSolver instead of the
Hessian matrix.
Integrit |Indicator of whether integrity checks are performed on the solver true
yChecks [function input data, specified as a logical value. If IntegrityChecks is

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

2 Functions

2-86

You can use mpcActiveSetSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcActiveSetOptions. Create the function myCode,
which uses mpcActiveSetSolver and mpcActiveSetOptions.

function [outl,out2] = myCode(inl,in2)
st#codegen

options = mpcActiveSetOptions;
[x,status] = mpcActiveSetSolver(Linv,f,A,b,Aeq,Beq,iA0,options);

Generate C code with MATLAB Coder™.

func = 'myCode’;
cfg = coder.config('mex'); % or 'lib', ‘'dll'
codegen('-config',cfg,func,'-0',func);

For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double' or 'single' using mpcActiveSetOptions.

See Also
mpcActiveSetSolver

Introduced in R2020a

mpcActiveSetSolver

mpcActiveSetSolver

Solve quadratic programming problem using active-set algorithm

Syntax

[x,exitflag] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options)
[x,exitflag,iA,lambda] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options)

Description

Using mpcActiveSetSolver, you can solve a quadratic programming (QP) problem using an active-
set algorithm. This function provides access to the built-in Model Predictive Control Toolbox active-
set QP solver.

Using an active-set solver can provide fast and robust performance for small-scale and medium-scale
optimization problems in both double and single precision.

This solver is useful for:

* Advanced MPC applications that are beyond the scope of Model Predictive Control Toolbox
software.

* Custom QP applications, including applications that require code generation.

Alternatively, you can also access the built-in interior-point QP solver using
mpcInteriorPointSolver.

[x,exitflag] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options) finds an optimal
solution x to a quadratic programming problem by minimizing the objective function:

XTHx + fTx

N| —

]:

subject to inequality constraints Ax < b and equality constraints Agqx = beq. €xitflag indicates the
validity of x.

[x,exitflag,iA, lambda] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,options) also
returns the active inequalities iA at the solution, and the Lagrange multipliers Llambda for the
solution.

Examples

Solve Quadratic Programming Problem Using Active-Set Solver

Find the values of x that minimize
f(x)=0. 5)(% + x% — X1Xp — 2X1 — 06Xy,

subject to the constraints

2-87

2 Functions

2-88

x1 20

xp =0
X1+ xy <2
—-X1 + 2xp < 2
2x1+x2 = 3.

Specify the Hessian matrix and linear multiplier vector for the objective function.

[1-1; -1 2];
[-2; -6];

H
f

Specify the inequality constraint parameters.

A
b

[-10; 0 -1; 11; -12; 2 11;
[6; 0; 2; 2; 31;

Define Aeq and beq to indicate that there are no equality constraints.

zeros(0,n);

length(f);
= zeros(0,1);

n =
Aeq
beq
Create a default option set for mpcActiveSetSolver.

opt = mpcActiveSetOptions;

To cold start the solver, define all inequality constraints as inactive.
iAQ = false(size(b));

Solve the QP problem.

[x,exitflag] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,iA0,opt);

Examine the solution x.

X

X = 2x1
0.6667
1.3333

When solving the QP problem, you can also determine which inequality constraints are active for the
solution.

[x,exitflag,iA, lambda] = mpcActiveSetSolver(H,f,A,b,Aeq,beq,1A0,0pt);

Check the active inequality constraints. An active inequality constraint is at equality for the optimal
solution.

iA
iA = 5x1 logical array

0

mpcActiveSetSolver

ol Sl SN o)

There is a single active inequality constraint. View the Lagrange multiplier for this constraint.
lambda.ineqlin(1)

ans = 0

Input Arguments

H — Hessian matrix
n-by-n matrix

Hessian matrix, specified as a symmetric n-by-n matrix, where n > 0 is the number of optimization
variables.

The active-set QP algorithm requires that the Hessian matrix be positive definite. To determine
whether H is positive definite, use the chol function.

[~,p] = chol(H);
If p = 0, then H is positive definite. Otherwise, p is a positive integer.

The active-set QP algorithm computes the lower-triangular Cholesky decomposition (Linv) of the
Hessian matrix. If your application requires repetitive calls of mpcActiveSetSolver using a
constant Hessian matrix, you can improve computational efficiency by computing Linv once and
passing it to mpcActiveSetSolver instead of the Hessian matrix. To do so, you must set the
UseHessianAsInput field of options to false.

options = mpcActiveSetOptions;
options.UseHessianAsInput = false;

To compute Linv, use the following code.

[L,p] = chol(H, 'lower");
Linv = linsolve(L,eye(size(L)),struct('LT"',true));

f — Multiplier of the objective function linear term
column vector of length n

Multiplier of the objective function linear term, specified as a column vector of length n, where n is
the number of optimization variables.

A — Linear inequality constraint coefficients
m-by-n matrix

Linear inequality constraint coefficients, specified as an m-by-n matrix, where n is the number of
optimization variables and m is the number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,n).

2-89

2 Functions

2-90

b — Right-hand side of inequality constraints
column vector of length m

Right-hand side of inequality constraints, specified as a column vector of length m, where m is the
number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,1).

Aeq — Linear equality constraint coefficients
q-by-n matrix

Linear equality constraint coefficients, specified as a g-by-n matrix, where n is the number of
optimization variables and q <= n is the number of equality constraints. Equality constraints must be
linearly independent with rank (Aeq) = q.

If your problem has no equality constraints, use zeros(0,n).

beq — Right-hand side of equality constraints
column vector of length g

Right-hand side of equality constraints, specified as a column vector of length g, where q is the
number of equality constraints.

If your problem has no equality constraints, use zeros(0,1).

1A0 — Initial active inequalities
logical vector of length m

Initial active inequalities, where the equal portion of the inequality is true, specified as a logical
vector of length m, where m is the number of inequality constraints. Specify 1A0 as follows:

* Ifyour problem has no inequality constraints, use false(0,1).

» For a cold start, use false(m,1).

» For a warm start, set 1A0 (i) == true to start the algorithm with the ith inequality constraint
active. Use the optional output argument iA from a previous solution to specify 1A0 in this way. If
both iA0 (i) and iAQ(j) are true, then rows i and j of A should be linearly independent.
Otherwise, the solution can fail with exitflag = -2.

options — Option set for mpcActiveSetSolver
structure

Option set for mpcActiveSetSolver, specified as a structure created using
mpcActiveSetOptions.

Output Arguments

x — Optimal solution to the QP problem
column vector of length n

Optimal solution to the QP problem, returned as a column vector of length n, where n is the number
of optimization variables. mpcActiveSetSolver always returns a value for x. To determine whether
the solution is optimal or feasible, check exitflag.

mpcActiveSetSolver

exitflag — Solution validity indicator
positive integer |0 | -1 | -2

Solution validity indicator, returned as an integer according to the following table.

Value Description

>0 X is optimal. In this case, exitflag represents the number of iterations performed during
optimization.

0 The maximum number of iterations was reached. Solution x might be suboptimal or
infeasible.

To determine if x is infeasible, check whether the solution violates the constraint tolerance
specified in options.

feasible = (A*x-b) <= options.ConstraintTolerance;

If any element of feasible is false, then x is infeasible.

-1 The problem appears to be infeasible, that is, the constraint Ax < b cannot be satisfied.

-2 An unrecoverable numerical error occurred.

iA — Active inequalities
logical vector of length m

Active inequalities, where the equal portion of the inequality is true, returned as a logical vector of
length m. If iA(1i) == true, then the ith inequality is active for solution x.

Use 1A to warm start a subsequent mpcActiveSetSolver solution.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields.

Field Description

ineqglin|Multipliers of the inequality constraints, returned as a vector of length n. When the
solution is optimal, the elements of ineqlin are nonnegative.

eqlin |Multipliers of the equality constraints, returned as a vector of length q. There are no sign
restrictions in the optimal solution.

Tips

* The KWIK algorithm requires that the Hessian matrix H be positive definite. When calculating
Linv, use the chol function.
[L,p] = chol(H, 'lower');

If p = 0, then H is positive definite. Otherwise, p is a positive integer.

* mpcActiveSetSolver provides access to the default active-set QP solver used by Model
Predictive Control Toolbox software. Use this command to solve QP problems in your own custom
MPC applications. For an example of a custom MPC application using mpcActiveSetSolver, see
“Solve Custom MPC Quadratic Programming Problem and Generate Code”.

2-91

2 Functions

2-92

Algorithms

mpcActiveSetSolver solves the QP problem using an active-set method, the KWIK algorithm,
based on [1]. For more information, see “QP Solvers”.

References

[1] Schmid, C., and L.T. Biegler. "Quadratic Programming Methods for Reduced Hessian SQP."
Computers & Chemical Engineering 18, no. 9 (September 1994): 817-32. https://doi.org/
10.1016/0098-1354(94)E0001-4.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* You can use mpcActiveSetSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcActiveSetOptions. Create the function myCode,
which uses mpcActiveSetSolver and mpcActiveSetOptions.

function [outl,out2] = myCode(inl,in2)
s#codegen

options = mpcActiveSetOptions;
[x,status] = mpcActiveSetSolver(Linv,f,A,b,Aeq,Beq,iA0,options);

Generate C code with MATLAB Coder.

func = 'myCode’;
cfg = coder.config('mex'); % or 'lib', ‘'dll'
codegen('-config',cfg,func,'-0',func);

» For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double’ or 'single' using mpcActiveSetOptions.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
mpcActiveSetOptions | mpcInteriorPointSolver | quadprog

Topics

“QP Solvers”
“Solve Custom MPC Quadratic Programming Problem and Generate Code”

Introduced in R2020a

mpclinteriorPointOptions

mpcinteriorPointOptions

Create default option set for mpcInteriorPointSolver

Syntax

options = mpcInteriorPointOptions
options = mpcInteriorPointOptions(type)

Description

options = mpcInteriorPointOptions creates a structure of default options for
mpcInteriorPointSolver, which solves a quadratic programming (QP) problem using an interior-
point algorithm.

options = mpcInteriorPointOptions(type) creates a default option set using the specified
input data type. All real options are specified using this data type.

Examples

Create Default Option Set for Interior-Point QP Solver

Create a default option set.

opt = mpcInteriorPointOptions;

Create and Modify Default Interior-Point QP Solver Option Set
Create a default option set.

opt = mpcInteriorPointOptions;

Specify the maximum number of iterations allowed during computation.
opt.MaxIterations = 100;

Specify a constraint tolerance for verifying that the optimal solution satisfies the inequality
constraints.

opt.ConstraintTolerance = 1.0e-4;

Create Interior-Point Option Set Specifying Input Argument Type

Create a default option set, specifying the input argument type.

opt = mpcInteriorPointOptions('single');

2-93

2 Functions

2-94

Input Arguments

type — Solver input argument data type
'double’ (default) | 'single’

Solver input argument data type, specified as either 'double' or 'single'. This data type is used
for both simulation and code generation. All real options in the option set are specified using this data
type, and all real input arguments to mpcInteriorPointSolver must match this type.

Output Arguments

options — Option set for mpcInteriorPointSolver

structure

Option set for mpcInteriorPointSolver, returned as a structure with the following fields.

Field

Description

Default

DataType

Input argument data type, specified as either 'double’ or 'single’.
This data type is used for both simulation and code generation, and all
real input arguments to the solver function must match this type.

"double’

MaxItera
tions

Maximum number of iterations allowed when computing the QP
solution, specified as a positive integer.

50

Constrai
ntTolera
nce

Tolerance used to verify that equality and inequality constraints are
satisfied by the optimal solution, specified as a positive scalar. A larger
ConstraintTolerance value allows for larger constraint violations.

le-6

Optimali
tyTolera
nce

Termination tolerance for first-order optimality (KKT dual residual),
specified as a positive scalar. Increasing this value relaxes the condition
for the optimality check.

le-6

Compleme
ntarityT
olerance

Termination tolerance for first-order optimality (KKT average
complementarity residual), specified as a positive scalar. Increasing this
value improves robustness, while decreasing this value increases
accuracy.

le-8

StepTole
rance

Termination tolerance for decision variables, specified as a positive
scalar.

le-8

Integrit
yChecks

Indicator of whether integrity checks are performed on the solver
function input data, specified as a logical value. If IntegrityChecks is
true, then integrity checks are performed and diagnostic messages are
displayed. Use false for code generation only.

true

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

mpclinteriorPointOptions

* You can use mpcInteriorPointSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcInteriorPointOptions. Create the function
myCode, which uses mpcInteriorPointSolver and mpcInteriorPointOptions.

function [outl,out2] = myCode(inl,in2)
s#codegen

options = mpcInteriorPointOptions;

[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,Beq,x0,options);
Generate C code with MATLAB Coder.

func = 'myCode’;

cfg = coder.config('mex'); % or 'lib', 'dll'
codegen('-config',cfg,func,'-0',func);

» For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double' or 'single' using mpcInteriorPointOptions.

See Also
mpcInteriorPointSolver

Introduced in R2020a

2-95

2 Functions

mpcinteriorPointSolver

Solve a quadratic programming problem using an interior-point algorithm

Syntax

[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,o0ptions)
[x,exitflag, feasible,lambda] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq, x0,
options)

Description

Using mpcInteriorPointSolver, you can solve a quadratic programming (QP) problem using a
primal-dual interior-point algorithm with a Mehrotra predictor-corrector. This function provides
access to the built-in Model Predictive Control Toolbox interior-point QP solver.

Using an interior-point solver can provide superior performance for large-scale optimization
problems, such as MPC applications that enforce constraints over large prediction and control
horizons.

This solver is useful for:

* Advanced MPC applications that are beyond the scope of Model Predictive Control Toolbox
software.

* Custom QP applications, including applications that require code generation.
Alternatively, you can also access the built-in active-set QP solver using mpcActiveSetSolver.

[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,options) finds an optimal
solution x to a quadratic programming problem by minimizing the objective function

J = 5XTHx + fTx

N| —

subject to inequality constraints Ax < b and equality constraints Agqx = bq. €xitflag indicates the
validity of x.

[x,exitflag, feasible,lambda] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq, x0,
options) also returns a logical flag feasible that indicates the feasibility of the solution and the
Lagrange multipliers Lambda for the solution.

Examples

Solve Quadratic Programming Problem Using Interior-Point Solver

Find the values of x that minimize
f(x)=0. 5X% + x% — X1Xg — 2x1 — 6Xp,

subject to the constraints

2-96

mpclinteriorPointSolver

x1 20

xp =0
X1+ xy <2
—-X1 + 2xp < 2
2x1+x2 = 3.

Specify the Hessian matrix and linear multiplier vector for the objective function.

1-1; -12];
-2; -61];

A
b

Define Aeq and beq to indicate that there are no equality constraints.

n = length(f);
Aeq = zeros(0,n);
beq = zeros(0,1);

As a best practice, verify that H is positive definite using the chol function.
[~,p] = chol(H);

If p = 0, then H is positive definite.

p=20

Create a default option set for mpcInteriorPointSolver.

opt = mpcInteriorPointOptions;

To cold start the solver, specify an initial guess of zeros for the elements of x.
x0 = zeros(n,1);

Solve the QP problem.

[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,beq,x0,0pt);

Examine the solution x.

X

X = 2x1
0.6667
1.3333

2-97

2 Functions

Input Arguments

H — Hessian matrix
n-by-n matrix

Hessian matrix, specified as an n-by-n matrix, where n > 0 is the number of optimization variables.

The interior-point QP algorithm requires that the Hessian matrix be positive definite. To determine
whether H is positive definite, use the chol function.

[~,p] = chol(H);
If p = 0, then H is positive definite. Otherwise, p is a positive integer.

f — Multiplier of the objective function linear term
column vector of length n

Multiplier of the objective function linear term, specified as a column vector of length n, where n is
the number of optimization variables.

A — Linear inequality constraint coefficients
m-by-n matrix | [1]

Linear inequality constraint coefficients, specified as an m-by-n matrix, where n is the number of
optimization variables and m is the number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,n).

b — Right-hand side of inequality constraints
column vector of length m

Right-hand side of inequality constraints, specified as a column vector of length m, where m is the
number of inequality constraints.

If your problem has no inequality constraints, use zeros(0,1).

Aeq — Linear equality constraint coefficients
q-by-n matrix | [1]

Linear equality constraint coefficients, specified as a g-by-n matrix, where n is the number of
optimization variables and q <= n is the number of equality constraints. Equality constraints must be
linearly independent with rank (Aeq) = q.

If your problem has no equality constraints, use zeros (0,n).

beq — Right-hand side of equality constraints
column vector of length ¢

Right-hand side of equality constraints, specified as a column vector of length g, where q is the
number of equality constraints.

If your problem has no equality constraints, use zeros(0,1).

x0 — Initial guess
column vector of length n

2-98

mpclinteriorPointSolver

Initial guess for the solution, where the equal portion of the inequality is true, specified as a column
vector of length n, where n is the number of optimization variables. For a cold start, specify the initial
guess as zeros(n,1).

options — Option set for mpcInteriorPointSolver
structure

Option set for mpcInteriorPointSolver, specified as a structure created using
mpcInteriorPointOptions.

Output Arguments

x — Optimal solution to the QP problem
column vector of length n

Optimal solution to the QP problem, returned as a column vector of length n, where n is the number
of optimization variables. mpcInteriorPointSolver always returns a value for x. To determine
whether the solution is optimal or feasible, check exitflag and feasible.

exitflag — Solution validity indicator
positive integer |0 | -1 | -2

Solution validity indicator, returned as an integer according to the following table.

Value Description

>0 X is optimal. exitflag represents the number of iterations performed during
optimization.
0 The maximum number of iterations was reached before the solver could find an optimal

solution. Solution x is feasible only if feasible is true.

-1 The problem appears to be infeasible; that is, the constraint Ax < b cannot be satisfied.

feasible — Solution feasibility
logical scalar

Solution feasibility, returned as a logical scalar. When exitflag is 0, the solver reached the
maximum number of iterations without finding an optimal solution. This suboptimal solution, returned
in x, is feasible only if feasible is true.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields.

Field Description

ineqlin|Multipliers of the inequality constraints, returned as a vector of length n. When the
solution is optimal, the elements of ineqlin are nonnegative.

eglin |Multipliers of the equality constraints, returned as a vector of length g. There are no sign
restrictions in the optimal solution.

2-99

2 Functions

2-100

Tips
» To determine whether H is positive definite, use the chol function.
[~,p] = chol(H);

If p = 0, then H is positive definite. Otherwise, p is a positive integer.

* mpcInteriorPointSolver provides access to the interior-point QP solver used by Model
Predictive Control Toolbox software. Use this command to solve QP problems in your own custom
MPC applications. For an example of a custom MPC application, see “Solve Custom MPC
Quadratic Programming Problem and Generate Code”. This example uses mpcActiveSetSolver,
however, the workflow applies to mpcInteriorPointSolver as well.

Algorithms

mpcInteriorPointSolver solves the QP problem using an interior-point method. For more
information, see “QP Solvers”.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* You can use mpcInteriorPointSolver as a general-purpose QP solver that supports code
generation. To specify solver options, use mpcInteriorPointOptions. Create the function
myCode, which uses mpcInteriorPointSolver and mpcInteriorPointOptions.

function [outl,out2] = myCode(inl,in2)
s#codegen

options = mpcInteriorPointOptions;
[x,exitflag] = mpcInteriorPointSolver(H,f,A,b,Aeq,Beq,x0,o0ptions);

Generate C code with MATLAB Coder.

func = 'myCode’;
cfg = coder.config('mex'); % or 'lib', ‘'dll'
codegen('-config',cfg,func,'-0',func);

» For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double’ or 'single' using mpcInteriorPointOptions.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
mpcInteriorPointOptions | mpcActiveSetSolver | quadprog

Topics
“QP Solvers”
“Solve Custom MPC Quadratic Programming Problem and Generate Code”

mpclinteriorPointSolver

Introduced in R2020a

2-101

2 Functions

2-102

mpcmove

Compute optimal control action and update controller states

Syntax

mv = mpcmove (MPCobj,xc,ym,r,v)
[mv,info] = mpcmove(MPCobj,xc,ym,r,v)
[1 = mpcmove(,options)

Description

Use this command to simulate an MPC controller in closed-loop with a plant model. Call mpcmove
repeatedly in a for loop to calculate the manipulated variable and update the controller states at each
time step.

mv = mpcmove(MPCobj,xc,ym, r,v) returns the optimal move mv and updates the states xc of the
controller MPCobj.

The manipulated variable mv at the current time is calculated given:

* the controller object, MPCobj,

* a pointer to the current estimated extended state, xc,
* the measured plant outputs, ym,

* the output references, r,

* and the measured disturbance input, v.

If ym, r or v is specified as [], or if it is missing as a last input argument, mpcmove uses the
appropriate MPCobj .Model.Nominal value instead.

When using default state estimation, mpcmove also updates the controller state referenced by the
handle object xc. Therefore, when using default state estimation, xc always points to the updated
controller state. When using custom state estimation, you should update xc prior to each mpcmove
call.

[mv,info] = mpcmove(MPCobj,xc,ym, r,v) returns additional information about the
optimization problem solved to calculate mv.

[1 = mpcmove(,options) overrides default constraints and weights in MPCobj with the
values specified in Options, an mpcmoveopt object. Use Options to provide run-time adjustment of
constraints and weights during the closed-loop simulation.

Examples
Simulate Closed-Loop Response Using mpcMove

Perform closed-loop simulation of a plant with one MV and one measured OV.

Define a plant model and create a model predictive controller with MV constraints.

mpcmove

ts = 2;
Plant = ss5(0.8,0.5,0.25,0,ts);
mpcobj = mpc(Plant);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

mpcobj .MV (1) .Min
mpcobj .MV (1) .Max

_2;
2;

Obtain an handle object pointing to the controller state.
Xc = mpcstate(mpcobj)

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
MPCSTATE object with fields

Plant: O

Disturbance: 0
Noise: [1x0 double]

LastMove: 0
Covariance: [2x2 double]

The controller has one state for the internal plant model, one for the disturbance model, and one to
hold the last value of the manipulated variable. All these three states are initialized to zero.

Set the reference signal. There is no measured disturbance.
r=1,;

Simulate the closed-loop response by calling mpcmove iteratively. In the simulation, assume that the
simulated plant is identical to the predictive model. Therefore the plant state x in this case is
identical to xc.Plant and the plant output is y = C*x + D*u = 0.25*x = 0.25*xc.Plant. Here,
mpcmove updates the controller state referenced by xc (therefore including xc.Plant), and returns
the manipulated variable in u (i), which is used just for plotting.

0:ts:40;
length(t);
zeros(N,1);
zeros(N,1);
i=1:N
y(i)
u(i)

SO

“hE< =+

o

0.25*xc.Plant;
mpcmove (mpcobj,xc,y(i),r);

end
Analyze the result.
[ts,us] = stairs(t,u);

plot(ts,us,'r-',t,y,'b--")
legend('MV','0V")

2-103

2 Functions

A
181 — — —0V| 7

0 5 10 15 20 25 30 35 40

Modify the MV upper bound as the simulation proceeds using an mpcmoveopt object. Since the
options argument overrides selected mpcobj properties, specify MV constraints again.

MPCopt = mpcmoveopt;
MPCopt.MVMin
MPCopt .MVMax

&y

2;

Simulate the closed-loop response and introduce the real-time upper limit change at eight seconds
(the fifth iteration step).

xc = mpcstate(mpcobj);
= zeros(N,1);
= zeros(N,1);
or i = 1:N
y(i) = 0.25*xc.Plant;
if 1 ==
MPCopt.MVMax = 1;
end
u(i) = mpcmove(mpcobj,xc,y(i),r,[],MPCopt);

-+ <

end

Analyze the results.
[ts,us] = stairs(t,u);

plot(ts,us,'r-',t,y,'b--")
legend('MV','0V")

2-104

mpcmove

(U

121 4

08r T

0.6 s =

041 7

0z2r / 7

0 5 10 15 20 25 30 35 40

Evaluate Scenario at Specific Time Instant

Define a plant model.

ts = 2;
Plant = ss(0.8,0.5,0.25,0,ts);

Create a model predictive controller with constraints on both the manipulated variable and the rate
of change of the manipulated variable. The prediction horizon is 10 intervals, and the control horizon
is blocked.

MPCobj = mpc(Plant,ts,10,[2 3 5]);

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

MPCobj .MV (1
MPCobj .MV (1
MPCobj .MV (1
MPCobj .MV (1

Min = -2;
.Max = 2;
.RateMin
.RateMax

-4

1;

~— — — ~—

Initialize (and return an handle to) the controller internal state for simulation.

xc = mpcstate(MPCobj);

2-105

2 Functions

2-106

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

xc.Plant = 2.8;
Xxc.LastMove = 0.85;

Compute the optimal control move at the current time.

y = 0.25*xc.Plant;
r=1;
[u,Info] = mpcmove(MPCobj,xc,y,r);

Analyze the predicted optimal sequences.

[ts,us] = stairs(Info.Topt,Info.Uopt);
plot(ts,us,'r-',Info.Topt,Info.Yopt, 'b--")
legend('MV','0V")

MY
I
———ov

1671 4

DE i i i i i i i i i

plot ignores Info.Uopt(end) as it is NaN.

Examine the optimal cost.
Info.Cost

ans = 0.0793

mpcmove

Input Arguments

MPCobj — Model predictive controller
MPC controller object

Model predictive controller, specified as an MPC controller object. To create an MPC controller, use
mpc.

xc — Current controller state handle
mpcstate object

Current controller state handle, specified as an mpcstate object.

Before you begin a simulation with mpcmove, initialize the controller, and return an handle to its state
using xc = mpcstate(MPCobj). Then, modify the default properties of xc as appropriate. mpcmove
modifies the controller state. The handle object xc always reflect the current (updated) state of the
controller.

If you are using default state estimation, mpcmove expects xc to represent xc[n|n-1]. The mpcmove
command updates the state values in the previous control interval with that information. Therefore,
you should not programmatically update xc at all. The default state estimator employs a steady-state
Kalman filter.

If you are using custom state estimation, mpcmove expects xc to represent xc[n|n]. Therefore, prior
to each mpcmove command, you must set xc.Plant, xc.Disturbance, and xc.Noise to the best
estimates of these states (using the latest measurements) at the current control interval.

ym — Current measured output values
column vector of length N,

Current measured output values at time k, specified as a column vector of length N,,,, where N, is
the number of measured outputs.

If you are using custom state estimation, set ym = [].

r — Plant output reference values
p-by-N, array

Plant output reference values, specified as a p-by-N, array, where p is the prediction horizon of
MPCobj and N, is the number of outputs. Row r (1, :) defines the reference values at step i of the
prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmove duplicates the last row to
fill the p-by-N, array. If you supply exactly one row, therefore, a constant reference applies for the
entire prediction horizon.

To implement reference previewing, which can improve tracking when a reference varies in a
predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
(p+ 1)'bY'de array

Current and anticipated measured disturbances, specified as a (p+1)-by-N,,4 array, where p is the
prediction horizon of MPCobj and N, is the number of measured disturbances. The first row of v

2-107

2 Functions

2-108

specifies the current measured disturbance values. Row v(i+1, :) defines the anticipated
disturbance values at step i of the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant model does not
include measured disturbances, use v = [].

If your model includes measured disturbances, v must contain at least one row. If v contains fewer
than p+1 rows, mpcmove duplicates the last row to fill the (p+1)-by-N,,4 array. If you supply exactly
one row, a constant measured disturbance applies for the entire prediction horizon.

To implement disturbance previewing, which can improve tracking when a disturbance varies in a
predictable manner, v must contain the anticipated variations, ideally for p steps.

options — Run-time options
mpcmoveopt object

Run-time options, specified as an mpcmoveopt object. Use options to override selected properties
of MPCobj during simulation. These options apply to the current mpcmove time instant only. Using
options yields the same result as redefining or modifying MPCobj before each call to mpcmove, but
involves considerably less overhead. Using options is equivalent to using an MPC Controller
Simulink block in combination with optional input signals that modify controller settings, such as MV
and OV constraints.

Output Arguments

mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length N,,,,, where N,,, is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

* Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

* Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

Uopt — Optimal manipulated variable sequence
(P“‘l)'bY‘va array

Predicted optimal manipulated variable adjustments (moves), returned as a (p+1)-by-N,,, array,
where p is the prediction horizon and N,,, is the number of manipulated variables.

mpcmove

Uopt (i, :) contains the calculated optimal values at time k+i-1,fori = 1,...,p, where k is the
current time. The first row of Info.Uopt contains the same manipulated variable values as output
argument mv. Since the controller does not calculate optimal control moves at time k+p, Uopt (p
+1,:) is equal to Uopt(p,:).

Yopt — Optimal output variable sequence
(p+1)-by-N, array

Optimal output variable sequence, returned as a (p+1)-by-N, array, where p is the prediction horizon
and N, is the number of outputs.

The first row of Info.Yopt contains the calculated outputs at time k based on the estimated states
and measured disturbances; it is not the measured output at time k. Yopt(1i, :) contains the
predicted output values at time k+i-1,fori = 1,...,p+1.

Yopt(i, :) contains the calculated output values at time k+i-1,fori = 2,...,p+1, where k is the
current time. Yopt (1, :) is computed based on the estimated states and measured disturbances.

Xopt — Optimal prediction model state sequence
(p+1)-by-N, array

Optimal prediction model state sequence, returned as a (p+1)-by-N, array, where p is the prediction
horizon and N, is the number of states in the plant and unmeasured disturbance models (states from
noise models are not included).

Xopt (i, :) contains the calculated state values at time k+i-1, fori = 2,...,p+1, where k is the
current time. Xopt (1, :) is the same as the current states state values.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt (1) = 0, representing the current
time. Subsequent time steps Topt (i) are given by Ts*(i-1), where Ts = MPCobj.Ts is the
controller sample time.

Use Topt when plotting the Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, €, used in constraint softening, returned as 0 or a positive scalar value.

* ¢ = 0 — All constraints were satisfied for the entire prediction horizon.

* &> (0 — At least one soft constraint is violated. When more than one constraint is violated, ¢
represents the worst-case soft constraint violation (scaled by your ECR values for each
constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer | 0 | -1 | -2

Number of solver iterations, returned as one of the following:

2-109

2 Functions

2-110

» Positive integer — Number of iterations needed to solve the optimization problem that determines
the optimal sequences.

* 0 — Optimization problem could not be solved in the specified maximum number of iterations.

* -1 — Optimization problem was infeasible. An optimization problem is infeasible if no solution can

satisfy all the hard constraints.
* —2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
‘feasible' | 'infeasible' | 'unrealiable’

Optimization solution status, returned as one of the following:

+ ‘'feasible' — Optimal solution was obtained (Iterations > 0)

+ ‘'infeasible' — Solver detected a problem with no feasible solution (Iterations = -1) or a
numerical error occurred (Iterations = -2)

* ‘'unreliable' — Solver failed to converge (Iterations = 0). In this case, if
MPCobj .Optimizer.UseSuboptimalSolutionis false, u freezes at the most recent
successful solution. Otherwise, it uses the suboptimal solution found during the last solver
iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its ohjectives. For more information, see “Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible', or when QPCode = 'feasible'’
and MPCobj .0Optimizer.UseSuboptimalSolutionis true.

Tips
* mpcmove updates xc, even though it is an input argument.

« Ifym, rorv is specified as [], or if it is missing as a last input argument, mpcmove uses the
appropriate MPCobj .Model.Nominal value instead.

» To view the predicted optimal behavior for the entire prediction horizon, plot the appropriate
sequences provided in Info.

* To determine the optimization status, check Info.Iterations and Info.QPCode.

Alternatives

* Use sim for plant mismatch and noise simulation when not using run-time constraints or weight
changes.

* Use the MPC Designer app to interactively design and simulate model predictive controllers.
* Use the MPC Controller block in Simulink and for code generation.
* Use mpcmoveCodeGeneration to simulate an MPC controller prior to code generation.

See Also
mpc | mpcmoveopt | mpcstate | review | sim | setEstimator | getEstimator

mpcmove

Topics

“Improving Control Performance with Look-Ahead (Previewing)”
“Switching Controllers Based on Optimal Costs”

“Understanding Control Behavior by Examining Optimal Control Sequence”

Introduced before R2006a

2-111

2 Functions

2-112

mpcmoveAdaptive

Compute optimal control with prediction model updating

Syntax

mv = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v)
[mv,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v)
[1 = mpcmoveAdaptive(,options)

Description

mv = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym,r,v) computes the optimal
manipulated variable moves at the current time. This result depends on the properties contained in
the MPC controller, the controller states, an updated prediction model, and the nominal values. The
result also depends on the measured output variables, the output references (setpoints), and the
measured disturbance inputs. mpcmoveAdaptive updates the controller state, X, when using default
state estimation. Call mpcmoveAdaptive repeatedly to simulate closed-loop model predictive control.

[mv,info] = mpcmoveAdaptive(MPCobj,x,Plant,Nominal,ym, r,v) returns additional details
about the solution in a structure. To view the predicted optimal trajectory for the entire prediction
horizon, plot the sequences provided in info. To determine whether the optimal control calculation
completed normally, check info.Iterations and info.QPCode.

[1 = mpcmoveAdaptive(,options) alters selected controller settings using options you
specify with mpcmoveopt. These changes apply for the current time instant only, enabling a
command-line simulation using mpcmoveAdaptive to mimic the Adaptive MPC Controller block in
Simulink in a computationally efficient manner.

Input Arguments

MPCobj — MPC controller
MPC controller object

MPC controller, specified as an implicit MPC controller object. To create the MPC controller, use the
mpc command.

X — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveAdaptive, initialize the controller state using x =
mpcstate(MPCobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmoveAdaptive expects x to represent x[n|n-1]. The
mpcmoveAdaptive command updates the state values in the previous control interval with that
information. Therefore, you should not programmatically update x at all. The default state estimator
employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveAdaptive expects x to represent x[n|n].
Therefore, prior to each mpcmoveAdaptive command, you must set x.Plant, x.Disturbance, and

mpcmoveAdaptive

x.Noise to the best estimates of these states (using the latest measurements) at the current control

interval.

For more information on state estimation for adaptive MPC and time-varying MPC, see “State
Estimation”.

Plant — Updated prediction model
discrete-time state-space model | model array

Updated prediction model, specified as one of the following:

A delay-free, discrete-time state-space (ss) model. This plant is the update to

MPCobj .Model.Plant and it must:

* Have the same sample time as the controller; that is, Plant.Ts must match MPCobj.Ts

* Have the same input and output signal configurations, such as type, order, and dimensions
* Define the same states as the controller prediction model, MPCobj .Model.Plant

An array of up to p+1 delay-free, discrete-time state-space models, where p is the prediction
horizon of MPCobj. Use this option to vary the controller prediction model over the prediction
horizon.

If Plant contains fewer than p+1 models, the last model repeats for the rest of the prediction
horizon.

Tip If you use a plant other than a delay-free, discrete-time state-space model to define the
prediction model in MPCobj, you can convert it to such a model to determine the prediction model
structure.

If the Then
original
plant is

Not a Convert it to a state-space model using ss.
state-
space
model

A
continuou |MPCobj . Ts, using c2d with default forward Euler discretization.
s-time
model

Convert it to a discrete-time model with the same sample time as the controller,

A model |Convert the delays to states using absorbDelay.
with
delays

Nominal — Updated nominal conditions
structure | structure array | [1]

Updated nominal conditions, specified as one of the following:

A structure of with the following fields:

2-113

2 Functions

2-114

Field Description Default

X Plant state at operating point [1

U Plant input at operating point, including manipulated []
variables and measured and unmeasured disturbances

Y Plant output at operating point [1

DX For continuous-time models, DX is the state derivative at []

operating point: DX=f(X,U). For discrete-time models, DX=x(k
+1)-x(k)=f(X,U)-X.

* An array of up to p+1 nominal condition structures, where p is the prediction horizon of MPCobj.
Use this option to vary controller nominal conditions over the prediction horizon.

If Nominal contains fewer than p+1 structures, the last structure repeats for the rest of the
prediction horizon.

If Nominal is empty, [1, or if a field is missing or empty, npcmoveAdaptive uses the corresponding
MPCobj .Model.Nominal value.

ym — Current measured outputs
row vector of length Ny,

Current measured outputs, specified as a row vector of length N,,,, vector, where N, is the number of
measured outputs.

If you are using custom state estimation, ym is ignored. If you set ym = [], then mpcmoveAdaptive
uses the appropriate nominal value.

r — Plant output reference values
p-by-N, array | []

Plant output reference values, specified as a p-by-N, array, where p is the prediction horizon of
MPCobj and N, is the number of outputs. Row r(1i, :) defines the reference values at step i of the
prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveAdaptive duplicates the
last row to fill the p-by-N, array. If you supply exactly one row, therefore, a constant reference applies
for the entire prediction horizon.

If you set r = [], then mpcmoveAdaptive uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies in a
predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
p'bY'de array | []

Current and anticipated measured disturbances, specified as a p-by-N,4 array, where p is the
prediction horizon of MPCobj and N, is the number of measured disturbances. Row v (i, :) defines
the expected measured disturbance values at step i of the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant model does not
include measured disturbances, use v = [].

mpcmoveAdaptive

v must contain at least one row. If v contains fewer than p rows, mpcmoveAdaptive duplicates the
last row to fill the p-by-N,,4 array. If you supply exactly one row, therefore, a constant measured
disturbance applies for the entire prediction horizon.

If you set v =[], then mpcmoveAdaptive uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance varies in a
predictable manner, v must contain the anticipated variations, ideally for p steps.

options — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of MPCobj, specified as an options object you create with
mpcmoveopt. These options apply to the current mpcmoveAdaptive time instant only. Using
options yields the same result as redefining or modifying MPCobj before each call to
mpcmoveAdaptive, but involves considerably less overhead. Using options is equivalent to using
an Adaptive MPC Controller Simulink block in combination with optional input signals that modify
controller settings, such as MV and OV constraints.

Output Arguments

mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length N,,,,, where N,,, is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

* Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

* Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

Uopt — Optimal manipulated variable sequence
(D‘*‘l)'bY‘va array

Predicted optimal manipulated variable adjustments (moves), returned as a (p+1)-by-N,,, array,
where p is the prediction horizon and N,,, is the number of manipulated variables.

Uopt (i, :) contains the calculated optimal values at time k+i-1,fori = 1,...,p, where k is the
current time. The first row of Info.Uopt contains the same manipulated variable values as output

2-115

2 Functions

2-116

argument mv. Since the controller does not calculate optimal control moves at time k+p, Uopt (p
+1,:) is equal to Uopt(p,:).

Yopt — Optimal output variable sequence
(p+1)-by-N, array

Optimal output variable sequence, returned as a (p+1)-by-N,, array, where p is the prediction horizon
and N, is the number of outputs.

The first row of Info.Yopt contains the calculated outputs at time k based on the estimated states
and measured disturbances; it is not the measured output at time k. Yopt (i, :) contains the
predicted output values at time k+i-1,fori = 1,...,p+1.

Yopt(i,:) contains the calculated output values at time k+i-1, fori = 2,...,p+1, where k is the
current time. Yopt (1, :) is computed based on the estimated states and measured disturbances.

Xopt — Optimal prediction model state sequence
(p+1)-by-N, array

Optimal prediction model state sequence, returned as a (p+1)-by-N, array, where p is the prediction
horizon and N, is the number of states in the plant and unmeasured disturbance models (states from
noise models are not included).

Xopt (i, :) contains the calculated state values at time k+i-1, fori = 2,...,p+1, where k is the
current time. Xopt (1, :) is the same as the current states state values.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt (1) = 0, representing the current
time. Subsequent time steps Topt (i) are given by Ts*(i-1), where Ts = MPCobj.Ts is the
controller sample time.

Use Topt when plotting the Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, €, used in constraint softening, returned as 0 or a positive scalar value.

* ¢ =0 — All constraints were satisfied for the entire prediction horizon.

* &> (0 — At least one soft constraint is violated. When more than one constraint is violated, ¢
represents the worst-case soft constraint violation (scaled by your ECR values for each
constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer |0 | -1 | -2

Number of solver iterations, returned as one of the following:

* Positive integer — Number of iterations needed to solve the optimization problem that determines
the optimal sequences.

mpcmoveAdaptive

* 0 — Optimization problem could not be solved in the specified maximum number of iterations.

* —1 — Optimization problem was infeasible. An optimization problem is infeasible if no solution can
satisfy all the hard constraints.

* —2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
‘feasible' | 'infeasible' | 'unrealiable’

Optimization solution status, returned as one of the following:

+ ‘'feasible' — Optimal solution was obtained (Iterations > 0)

+ ‘'infeasible' — Solver detected a problem with no feasible solution (Iterations = -1) or a
numerical error occurred (Iterations = -2)

* ‘'unreliable' — Solver failed to converge (Iterations = 0). In this case, if
MPCobj.0Optimizer.UseSuboptimalSolution is false, u freezes at the most recent
successful solution. Otherwise, it uses the suboptimal solution found during the last solver
iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its objectives. For more information, see “Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible’, or when QPCode = 'feasible’
and MPCobj.0Optimizer.UseSuboptimalSolution is true.

Tips
» If the prediction model is time-invariant, use mpcmove.
* Use the Adaptive MPC Controller Simulink block for simulations and code generation.

See Also
mpc | mpcmove | mpcmoveopt | mpcstate | review | sim | setEstimator | getEstimator

Topics

“Adaptive MPC”
“Time-Varying MPC”
“Optimization Problem”

Introduced in R2014b

2-117

2 Functions

mpcmoveCodeGeneration

Compute optimal control moves with code generation support

Syntax

[mv,newStateData] = mpcmoveCodeGeneration(configData,stateData,onlineData)
[,info] = mpcmoveCodeGeneration()

Description

[mv,newStateData] = mpcmoveCodeGeneration(configData,stateData,onlineData)
computes optimal MPC control moves and supports code generation for deployment to real-time
targets. The input data structures, generated using getCodeGenerationData, define the MPC
controller to simulate.

mpcmoveCodeGeneration does not check input arguments for correct dimensions and data types.

[,info] = mpcmoveCodeGeneration() returns additional information about the
optimization result, including the number of iterations and the objective function cost.

Examples

Compute Optimal Control Moves Using Code Generation Data Structures

Create a proper plant model.

rs

Specify the controller sample time.
Ts = 0.1;

Create an MPC controller.

mpcObj = mpc(plant,Ts);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Create code generation data structures.

[configData,stateData,onlineDatal = getCodeGenerationData(mpcObj);

-->Converting model to discrete time.

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.
-->Converting model to discrete time.

2-118

mpcmoveCodeGeneration

-->Assuming output disturbance added to measured output channel #1 is integrated white noise.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

Initialize the plant states to zero to match the default states used by the MPC controller.

Run a closed-loop simulation. At each control interval, update the online data structure and call
mpcmoveCodeGeneration to compute the optimal control moves.

X = zeros(size(plant.B,1),1); % Initialize plant states to zero (|mpcObj| default).
Tsim = 20;
for i = l:round(Tsim/Ts)+1
% Update plant output.
y = plant.C*x;
% Update measured output in online data.
onlineData.signals.ym = y;
% Update reference signal in online data.
onlineData.signals.ref = 1;
% Compute control actions.
[u,statedata] = mpcmoveCodeGeneration(configData,stateData,onlineData);
% Update plant state.
x = plant.A*x + plant.B*u;
end

Generate MEX function with MATLAB® Coder™, specifying configData as a constant.

func = 'mpcmoveCodeGeneration';

funcOutput = 'mpcmoveMEX';

Cfg = coder.config('mex');

Cfg.DynamicMemoryAllocation = 'off';

codegen('-config',Cfg, func,'-o',funcOutput,'-args',...
{coder.Constant(configData),stateData,onlineData});

Code generation successful.

Input Arguments

configData — MPC configuration parameters
structure

MPC configuration parameters that are constant at run time, specified as a structure generated using
getCodeGenerationData.

Note When using codegen, configData must be defined as coder.Constant.

stateData — Controller state
structure

Controller state at run time, specified as a structure. Generate the initial state structure using
getCodeGenerationData. For subsequent control intervals, use the updated controller state from
the previous interval. In general, use the newStateData structure directly.

If custom state estimation is enabled, you must manually update the stateData structure during
each control interval. For more information, see “Custom State Estimation”.

2-119

2 Functions

2-120

stateData has the following fields:

Plant — Plant model state estimates
MPCobj nominal plant states (default) | column vector of length n,,

Plant model state estimates, specified as a column vector of length N,,, where N, is the number of
plant model states.

Note If custom state estimation is enabled, update Plant at each control interval. Otherwise, do not
change this field. Instead use the values returned by either getCodeGenerationData or
mpcmoveCodeGeneration.

Disturbance — Unmeasured disturbance model state estimates
[1 (default) | column vector

Unmeasured disturbance model state estimates, specified as a column vector of length N,4, where N,4
is the number of unmeasured disturbance model states. Disturbance contains the input disturbance
model states followed by the output disturbance model states.

To view the input and output disturbance models, use getindist and getoutdist respectively.

Note If custom state estimation is enabled, update Disturbance at each control interval.
Otherwise, do not change this field. Instead use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

Noise — Output measurement noise model state estimates
[1 (default) | column vector

Output measurement noise model state estimates, specified as a column vector of length N,,,, where
N,, is the number of noise model states.

Note If custom state estimation is enabled, update Noise at each control interval. Otherwise, do not
change this field. Instead use the values returned by either getCodeGenerationData or
mpcmoveCodeGeneration.

LastMove — Manipulated variable control moves from previous control interval
MPCobj nominal MV values (default) | column vector

Manipulated variable control moves from previous control interval, specified as a column vector of
length N,,,, where N,,, is the number of manipulated variables.

Note Do not change the value of LastMove. Always use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

Covariance — Covariance matrix for controller state estimates
symmetrical array

mpcmoveCodeGeneration

Covariance matrix for controller state estimates, specified as a symmetrical N-by-N array, where N is
number of extended controller states; that is, the sum of N,;,, N,4, and Ny,

If the controller uses custom state estimation, Covariance is empty.

Note Do not change the value of Covariance. Always use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

iA — Active inequality constraints
false (default) | logical vector

Active inequality constraints, where the equal portion of the inequality is true, specified as a logical
vector of length M. If 1A(i) is true, then the ith inequality is active for the latest QP solver solution.

Note Do not change the value of iA. Always use the values returned by either
getCodeGenerationData or mpcmoveCodeGeneration.

onlineData — Online controller data
structure

Online controller data that you must update at run time, specified as a structure with the following
fields. Generate the initial structure using getCodeGenerationData.

signals — Updated input and output signals
structure

Updated input and output signals, specified as a structure with the following fields:

ym — Measured outputs
vector

Measured outputs, specified as a vector of length N,,,,, where N, is the number of measured outputs.

By default, getCodeGenerationData sets ym to the nominal measured output values from the
controller.

ref — Output references
row vector | array

Output references, specified as one of the following:

* Row vector of length N, where N, is the number of outputs.

+ If you are using reference signal previewing with implicit or adaptive MPC, specify a p-by-N,
array, where p is the prediction horizon.

By default,getCodeGenerationData sets ref to the nominal output values from the controller.

md — Measured disturbances
row vector | array

Measured disturbances, specified as:

2-121

2 Functions

2-122

* A row vector of length N4, where N,,4 is the number of measured disturbances.
» Ifyou are using signal previewing with implicit or adaptive MPC, specify a p-by-N,,4 array.

By default, if your controller has measured disturbances,getCodeGenerationData sets md to the
nominal measured disturbance values from the controller. Otherwise, this field is empty and ignored
by mpcmoveCodeGeneration.

mvTarget — Targets for manipulated variables
[1 (default) | vector

Targets for manipulated variables, which replace the targets defined in configData.uTarget,
specified as one of the following:

* Vector of length N,,,,, where N,,,, is the number of manipulated variables
* [] to use the default targets defined in configData.uTarget

This field is ignored when using an explicit MPC controller.

externalMV — Manipulated variables externally applied to the plant
[1 (default) | vector

Manipulated variables externally applied to the plant, specified as:

* Avector of length N,,,,.
* [] to apply the optimal control moves to the plant.

weights — Updated QP optimization weights
structure

Updated QP optimization weights, specified as a structure. If you do not expect tuning weights to
change at run time, ignore weights. This field is ignored when using an explicit MPC controller.

This structure contains the following fields:

y — Output variable tuning weights
[1 (default) | row vector | array

Output variable tuning weights that replace the original controller output weights at run time at run
time, specified as a row vector or array of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length N, where N, is
the number of output variables.

To vary the tuning weights over the prediction horizon from time k+1 to time k+p, specify an array
with N, columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the output variable tuning weights for one prediction horizon step. If you specify fewer
than p rows, the weights in the final row are used for the remaining steps of the prediction horizon.

If y is empty, [], the default weights defined in the original MPC controller are used.

u — Manipulated variable tuning weights
[] (default) | row vector | array

Manipulated variable tuning weights that replace the original controller manipulated variable
weights at run time, specified as a row vector or array of nonnegative values.

mpcmoveCodeGeneration

To use the same weights across the prediction horizon, specify a row vector of length N,,,, where N,,,
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with N,,,, columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable tuning weights for one prediction horizon step. If you specify
fewer than p rows, the weights in the final row are used for the remaining steps of the prediction
horizon.

If u is empty, [], the default weights defined in the original MPC controller are used.

du — Manipulated variable rate tuning weights
[1 (default) | row vector | array

Manipulated variable rate tuning weights that replace the original controller manipulated variable
rate weights at run time, specified as a row vector or array of nonnegative values.

To use the same weights across the prediction horizon, specify a row vector of length N,,,, where N,,,
is the number of manipulated variables.

To vary the tuning weights over the prediction horizon from time k to time k+p-1, specify an array
with N,,, columns and up to p rows. Here, k is the current time and p is the prediction horizon. Each
row contains the manipulated variable rate tuning weights for one prediction horizon step. If you
specify fewer than p rows, the weights in the final row are used for the remaining steps of the
prediction horizon.

If du is empty, [], the default weights defined in the original MPC controller are used.

ecr — Weight on slack variable used for constraint softening
[] (default) | nonnegative scalar

Weight on slack variable used for constraint softening, specified as a nonnegative scalar.
If ecr is empty, [], the default weight defined in the original MPC controller are used.

limits — Updated input and output constraints
structure

Updated input and output constraints, specified as a structure. If you do not expect constraints to
change at run time, ignore 1imits. This field is ignored when using an explicit MPC controller.

This structure contains the following fields:

ymin — Output variable lower bounds
[1 (default) | column vector

Output variable lower bounds, specified as a column vector of length N,. ymin (1) replaces the
OutputVariables (i) .Min constraint from the original controller. If the

OutputVariables (i) .Min property of the controller is specified as a vector, ymin (i) replaces the
first finite entry in this vector, and the remaining values shift to retain the same constraint profile.

If ymin is empty, [], the default bounds defined in the original MPC controller are used.

ymax — Output variable upper bounds
[1 (default) | column vector

2-123

2 Functions

2-124

Output variable upper bounds, specified as a column vector of length N,. ymax (1) replaces the
OutputVariables (i) .Max constraint from the original controller. If the

OQutputVariables (i) .Max property of the controller is specified as a vector, ymax (1) replaces the
first finite entry in this vector, and the remaining values shift to retain the same constraint profile.

If ymax is empty, [], the default bounds defined in the original MPC controller are used.

umin — Manipulated variable lower bounds
[1 (default) | column vector

Manipulated variable lower bounds, specified as a column vector of length N,,,. umin (i) replaces the
ManipulatedVariables(i).Min constraint from the original controller. If the
ManipulatedVariables (i) .Min property of the controller is specified as a vector, umin (i)
replaces the first finite entry in this vector, and the remaining values shift to retain the same
constraint profile.

If umin is empty, [], the default bounds defined in the original MPC controller are used.

umax — Manipulated variable upper bounds
[1 (default) | column vector

Manipulated variable upper bounds, specified as a column vector of length N,,,. umax(1i) replaces
the ManipulatedVariables (i) .Max constraint from the original controller. If the
ManipulatedVariables (i) .Max property of the controller is specified as a vector, umax (i)
replaces the first finite entry in this vector, and the remaining values shift to retain the same
constraint profile.

If umax is empty, [], the default bounds defined in the original MPC controller are used.

customconstraints — Updated custom mixed input/output constraints
structure

Updated custom mixed input/output constraints, specified as a structure. This field is ignored when
using an explicit MPC controller.

This structure has the following fields:

E — Manipulated variable constraint constant
[1 (default) | N.-by-N,,, array

Manipulated variable constraint constant, specified as an N,-by-N,,, array, where N, is the number of
constraints, and N,,, is the number of manipulated variables.

If E is empty, [], the corresponding constraint defined in the original MPC controller are used.

F — Controlled output constraint constant
[] (default) | N-by-N, array

Controlled output constraint constant, specified as an N.-by-N, array, where N, is the number of
controlled outputs (measured and unmeasured).

G — Mixed input/output constraint constant
[1 (default) | column vector of length N,

Mixed input/output constraint constant, specified as a column vector of length N..

mpcmoveCodeGeneration

S — Measured disturbance constraint constant
[] (default) | N-by-N, array

Measured disturbance constraint constant, specified as an N.-by-N,,4 array, where N4 is the number
of measured disturbances.

horizons — Updated controller horizons
structure

Updated controller horizons, specified as a structure. To vary horizons at run time, first create your
data structures using getCodeGenerationData setting the UseVariableHorizon name-value pair
to true. When you vary the horizons, you must specify both the prediction horizon and the control
horizon. For more information, see “Adjust Horizons at Run Time”.

This field is ignored when using an explicit MPC controller.
This structure has the following fields:

p — Prediction horizon
[1 (default) | positive integer

Prediction horizon, which replaces the value of configData. p at run time, specified as a positive
integer.

Specifying p changes the:

* Number of rows in the optimal sequences returned in info
* The maximum dimensions of the fields in model when configData.IsLTVis true

m — Control horizon
[1 (default) | positive integer

vector of positive integers

Control horizon, which replaces the value of configData.m at run time, specified as one of the
following:

» Positive integer, m, between 1 and p, inclusive, where p is the prediction horizon (horizons.p).
In this case, the controller computes m free control moves occurring at times k through k+m-1,
and holds the controller output constant for the remaining prediction horizon steps from k+m
through k+p-1. Here, k is the current control interval. For optimal trajectory planning set m equal
to p.

* Vector of positive integers, [m;, m,, ...], where the sum of the integers equals the prediction
horizon, p. In this case, the controller computes M blocks of free moves, where M is the length of
the control horizon vector. The first free move applies to times k through k+m;-1, the second free
move applies from time k+m; through k+m;+m,-1, and so on. Using block moves can improve the
robustness of your controller compared to the default case.

model — Updated plant and nominal values
structure

Updated plant and nominal values for adaptive MPC and time-varying MPC, specified as a structure.
model is only available if you specify isAdaptive or isLTV as true when creating code generation
data structures.

This structure contains the following fields:

2-125

2 Functions

A — State matrix of discrete-time state-space plant model
N,-by-N, array | N,-by-N,-by-(p+1) array

State matrix of discrete-time state-space plant model, specified as an:

* N,-by-N, array when using adaptive MPC,
* N,-by-N,-by-(p+1) array when using time-varying MPC,

where N, is the number of plant states.

B — Input-to-state matrix of discrete-time state-space plant model
N,-by-N, array | N,-by-N,-by-(p+1) array

Input-to-state matrix of discrete-time state-space plant model, specified as an:

* N,-by-N, array when using adaptive MPC,
* N,-by-N,-by-(p+1) array when using time-varying MPC,

where N, is the number of plant inputs.

C — State-to-output matrix of discrete-time state-space plant model
N,-by-N, array | N,-by-N,-by-(p+1) array

State-to-output matrix of discrete-time state-space plant model, specified as an:

* N,-by-N, array when using adaptive MPC.
* N,-by-N,-by-(p+1) array when using time-varying MPC.

D — Feedthrough matrix of discrete-time state-space plant model
Ny-by-N, array | N,-by-N,-by-(p+1) array

Feedthrough matrix of discrete-time state-space plant model, specified as an:

* N,-by-N, array when using adaptive MPC.
* N,-by-N,-by-(p+1) array when using time-varying MPC.

Since MPC controllers do not support plants with direct feedthrough, specify D as an array of zeros.

X — Nominal plant states
column vector of length N, | N,-by-1-by-(p+1) array

Nominal plant states, specified as:

* A column vector of length N, when using adaptive MPC.
* An N,-by-1-by-(p+1) array when using time-varying MPC.

U — Nominal plant inputs
column vector of length N, | N-by-1-by-(p+1) array

Nominal plant inputs, specified as:

* A column vector of length N, when using adaptive MPC.
* An N,-by-1-by-(p+1) array when using time-varying MPC.

2-126

mpcmoveCodeGeneration

Y — Nominal plant outputs
column vector of length N, | N,-by-1-by-(p+1) array

Nominal plant outputs, specified as:

* A column vector of length Nywhen using adaptive MPC.
* An N,-by-1-by-(p+1) array when using time-varying MPC.

DX — Nominal plant state derivatives
column vector of length N, | N,-by-1-by-(p+1) array

Nominal plant state derivatives, specified as:

* A column vector of length N, when using adaptive MPC.
* An N,-by-1-by-(p+1) array when using time-varying MPC.

Output Arguments

mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length N,,,, where N,,, is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

* Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

» Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

newStateData — Updated controller state
structure

Updated controller state, returned as a structure. For subsequent control intervals, pass
newStateData to mpcmoveCodeGeneration as stateData.

If custom state estimation is enabled, use newStateData to manually update the state structure
before the next control interval. For more information, see “Custom State Estimation”.

info — Controller optimization information
structure

Controller optimization information, returned as a structure.

If you are using implicit or adaptive MPC, info contains the following fields:

2-127

2 Functions

2-128

Field Description

Iterati |Number of QP solver iterations

ons

QPCode |QP solver status code

Cost Objective function cost

Uopt Optimal manipulated variable adjustments
Yopt Optimal predicted output variable sequence
Xopt Optimal predicted state variable sequence
Topt Time horizon intervals

Slack Slack variable used in constraint softening

If configData.OnlyComputeCost is true, the optimal sequence information, Uopt, Yopt, Xopt,
Topt, and Slack, is not available:

For more information, see mpcmove and mpcmoveAdaptive.

If you are using explicit MPC, info contains the following fields:

Field Description

Region |Region in which the optimal solution was found

ExitCod |Solution status code
e

For more information, see mpcmoveExplicit.

Extended Capabilities

C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* You can generate code for both implicit and explicit MPC controllers.
* To generate code for computing optimal MPC control moves:

1 Generate data structures from an MPC controller or explicit MPC controller using
getCodeGenerationData.

2 To verify that your controller produces the expected closed-loop results, simulate it using
mpcmoveCodeGeneration in place of mpcmove.

3 Generate code for mpcmoveCodeGeneration using codegen. This step requires MATLAB
Coder software.

GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.

See Also
getCodeGenerationData | mpcmove | mpcmoveExplicit | mpcmoveAdaptive | codegen

mpcmoveCodeGeneration

Topics

“Generate Code to Compute Optimal MPC Moves in MATLAB”
“Generate Code and Deploy Controller to Real-Time Targets”

Introduced in R2016a

2-129

2 Functions

2-130

mpcmoveExplicit

Compute optimal control using explicit MPC

Syntax

mv = mpcmoveExplicit(empcobj,x,ym,r)
[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v)
[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v,MVused)

Description

Use this command to simulate an explicit MPC controller in closed-loop with a plant model. Call
mpcmoveExplicit repeatedly in a for loop to calculate the manipulated variable and update the
controller states at each time step.

mv = mpcmoveExplicit(empcobj,x,ym,r) returns the optimal move mv and updates the states
xc of the controller empcobj.

The manipulated variable mv at the current time is calculated given:

» the controller object, empcobj,

* a pointer to the current estimated extended state, xc,
* the measured plant outputs, ym,

* the output references, r,

* and the measured disturbance input, v.

If ym, r or v is specified as [], or if it is missing as a last input argument, mpcmove uses the
appropriate MPCobj .Model.Nominal value instead.

When using default state estimation, mpcmoveExplicit also updates the controller state referenced
by the handle object xc. Therefore, when using default state estimation, xc always points to the
updated controller state. When using custom state estimation, you should update xc prior to each
mpcmoveExplicit call

[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v) returns additional details about the
computation in a structure. To determine whether the optimal control calculation completed normally,
check the data in info.

[mv,info] = mpcmoveExplicit(empcobj,x,ym,r,v,MVused) specifies the manipulated
variable values used in the previous mpcmoveExplicit command, allowing a command-line
simulation to mimic the Explicit MPC Controller Simulink block with the optional external MV input
signal.

Examples

mpcmoveExplicit

Simulate explicit MPC using mpcmoveExplicit

This example shows how to use mpcmoveExplicit to simulate a plant in closed loop with an explicit
MPC controller.

First, define the sample time, the plant (for this example, a double integrator), and create a
traditional MPC object.

Ts = 0.1;
plant = tf(1,[1 0 0]);
mpcobj = mpc(plant,0.1);

-->The "PredictionHorizon" property is empty. Assuming default 10.

-->The "ControlHorizon" property is empty. Assuming default 2.

-->The "Weights.ManipulatedVariables" property is empty. Assuming default 0.00000.
-->The "Weights.ManipulatedVariablesRate" property is empty. Assuming default 0.10000.
-->The "Weights.OutputVariables" property is empty. Assuming default 1.00000.

Define constraints on the manipulated variable.
mpcobj .MV = struct('Min',-1, 'Max',1);

The MPC controller states include states from the plant model, the disturbance model noise model,
and the last values of the manipulated variables, in that order. To create a range structure where you
can specify the range for each state, reference, and manipulated variable, use
generateExplicitRange.

range = generateExplicitRange(mpcobj);

-->Converting the "Model.Plant" property to state-space.
-->Converting model to discrete time.
Assuming no disturbance added to measured output channel #1.
-->The "Model.Noise" property is empty. Assuming white noise on each measured output.

If at run time any of these variables falls outside its range, the controller returns an error status and
sets the manipulated variables to their last values. Therefore, it is important that you do not
underestimate these ranges. For this example, use the following ranges.

range.State.Min(:) = [-10;-10];
range.State.Max(:) = [10;10];
range.Reference.Min = -2;
range.Reference.Max = 2;

range.ManipulatedVariable.Min
range.ManipulatedVariable.Max

mpcobj .MV.Min -1;
mpcobj .MV.Max +1;

Create an explicit MPC controller from the traditional MPC object and the range structure.
empcobj = generateExplicitMPC(mpcobj, range);
Regions found / unexplored: 9/ 0

Set up the number of simulation steps and initialize arrays to store the plant input and output signals
(so they can be plotted later).

round(5/Ts);
zeros(N,1);

N
U
Y zeros(N,1);

2-131

2 Functions

Discretize the plant, and set up its initial condition.

dtplant = ss(c2d(plant,Ts));
x = [0 0]";

To obtain an handle (that is a pointer) to the controller state, use mpcstate.
xc = mpcstate(empcobj)
MPCSTATE object with fields

Plant: [0 0]
Disturbance: [1x0 double]

[
Noise: [1x0 double]
LastMove: 0
Covariance: [2x2 double]

The controller has two states for the internal plant model, and one to hold the last value of the
manipulated variable. All these states are initialized to zero.

Iteratively simulate the closed-loop response to a reference signal of 0. 8. To calculate the explicit
MPC controller move, use mpcmoveExplicit.

for k = 1:N

% update plant measurement and store signal
dtplant.C*x;
)=y;

<<
~ 1

(

o°

compute explicit MPC action and store signal
= mpcmoveExplicit(empcobj,xc,y,0.8);
(k)=u;

cc

% update plant state
x = dtplant.A*x + dtplant.B*u;
end

Plot the resulting plant input and output signals.

plot(1:N,[U Y])

title('Closed loop response')
legend('mv', 'output"')
xlabel('steps')

grid

2-132

mpcmoveExplicit

Closed loop response

'15 T T T T T T T T T
my
output
L S — 7
LY —_
| pr N R
| o
I e
a1 | # i
A
A~ I
| i e
0F- | / I I
| In'
| ;’I
| /
| [
N5 | / 4
. /
. /
| f
[!
_.1 - | I — 4
__15 1 1 i 1 1 1 1 1 1
1] 5 10 15 20 25 30 35 40 45 50
SIEDS

Input Arguments

empcobj — Explicit MPC controller
explicit MPC controller object

Explicit MPC controller to simulate, specified as an Explicit MPC controller object. Use
generateExplicitMPC to create an explicit MPC controller.

X — Current MPC controller state
mpcstate object

Current MPC controller state, specified as an mpcstate object.

Before you begin a simulation with mpcmoveExplicit, initialize the controller state using x =
mpcstate(empcobj). Then, modify the default properties of x as appropriate.

If you are using default state estimation, mpcmoveExplicit expects x to represent x[n|n-1]. The
mpcmoveExplicit command updates the state values in the previous control interval with that

information. Therefore, you should not programmatically update x at all. The default state estimator
employs a linear time-varying Kalman filter.

If you are using custom state estimation, mpcmoveExplicit expects x to represent x[n|n].

Therefore, prior to each mpcmoveExplicit command, you must set x.Plant, x.Disturbance, and
x.Noise to the best estimates of these states (using the latest measurements) at the current control
interval.

2-133

2 Functions

2-134

ym — Current measured outputs
vector

Current measured outputs, specified as a row vector of length N,,,,, where N, is the number of
measured outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveExplicit uses the appropriate nominal value.

r — Plant output reference values
vector

Plant output reference values, specified as a vector of length N,. mpcmoveExplicit uses a constant
reference for the entire prediction horizon. In contrast to mpcmove and mpcmoveAdaptive,
mpcmoveExplicit does not support reference previewing.

If you set r = [], then mpcmoveExplicit uses the appropriate nominal value.

v — Current and anticipated measured disturbances
vector

Current and anticipated measured disturbances, specified as a vector of length N,,45, where N4 is the
number of measured disturbances. In contrast to mpcmove and mpcmoveAdaptive,
mpcmoveExplicit does not support disturbance previewing. If your plant model does not include
measured disturbances, use v = [].

MVused — Manipulated variable values from previous interval
vector

Manipulated variable values applied to the plant during the previous control interval, specified as a
vector of length N,,,, where N,,, is the number of manipulated variables. If this is the first
mpcmoveExplicit command in a simulation sequence, omit this argument. Otherwise, if the MVs
calculated by mpcmoveExplicit in the previous interval were overridden, set MVused to the correct
values in order to improve the controller state estimation accuracy. If you omit MVused,
mpcmoveExplicit assumes MVused = x.LastMove.

Output Arguments

mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length N,,,, where N,,, is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

* Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

» Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

mpcmoveExplicit

info — Explicit MPC solution status
structure

Explicit MPC solution status, returned as a structure having the following fields.

ExitCode — Solution status code
110]-1

Solution status code, returned as one of the following values:

* 1 — Successful solution.
* 0 — Failure. One or more controller input parameters is out of range.
* -1 — Undefined. Parameters are in range but an extrapolation must be used.

Region — Region to which current controller input parameters belong
positive integer | 0

Region to which current controller input parameters belong, returned as either a positive integer or
0. The integer value is the index of the polyhedron (region) to which the current controller input
parameters belong. If the solution failed, Region = 0.

Tips

* Use the Explicit MPC Controller Simulink block for simulation and code generation.
See Also

generateExplicitMPC | generateExplicitRange

Topics

“Explicit MPC Control of a Single-Input-Single-Output Plant”

“Explicit MPC”
“Design Workflow for Explicit MPC”

Introduced in R2014b

2-135

2 Functions

2-136

mpcmoveMultiple

Compute gain-scheduling MPC control action at a single time instant

Syntax

mv = mpcmoveMultiple(MPCArray,states,index,ym,r,v)
[mv,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v)
[1 = mpcmoveMultiple(,options)

Description

mv = mpcmoveMultiple(MPCArray,states,index,ym, r,v) computes the optimal manipulated
variable moves at the current time using a model predictive controller selected by index from an
array of MPC controllers. This results depends upon the properties contained in the MPC controller
and the controller states. The result also depends on the measured plant outputs, the output
references (setpoints), and the measured disturbance inputs. mpcmoveMultiple updates the
controller state when default state estimation is used. Call mpcmoveMultiple repeatedly to simulate
closed-loop model predictive control.

[mv,info] = mpcmoveMultiple(MPCArray,states,index,ym,r,v) returns additional details
about the computation in a structure. To determine whether the optimal control calculation
completed normally, check the data in info.

[1 = mpcmoveMultiple(,options) alters selected controller settings using options you
specify with mpcmoveopt. These changes apply for the current time instant only, allowing a
command-line simulation using mpcmoveMultiple to mimic the Multiple MPC Controllers block in
Simulink in a computationally efficient manner.

Input Arguments

MPCArray — MPC controllers
cell array of MPC controller objects

MPC controllers to simulate, specified as a cell array of traditional (implicit) MPC controller objects.
Use the mpc command to create the MPC controllers.

All the controllers in MPCArray must use either default state estimation or custom state estimation.
Mismatch is not permitted.

states — Current MPC controller states
cell array of mpcstate objects

Current controller states for each MPC controller in MPCArray, specified as a cell array of mpcstate
objects.

Before you begin a simulation with mpcmoveMultiple, initialize each controller state using X =
mpcstate(MPCobj). Then, modify the default properties of each state as appropriate.

If you are using default state estimation, mpcmoveMultiple expects X to represent x[n|n-1]
(where X is one entry in states, the current state of one MPC controller in MPCArray). The

mpcmoveMultiple

mpcmoveMultiple command updates the state values in the previous control interval with that
information. Therefore, you should not programmatically update x at all. The default state estimator
employs a steady-state Kalman filter.

If you are using custom state estimation, mpcmoveMultiple expects x to represent x[n|n].
Therefore, prior to each mpcmoveMultiple command, you must set x.Plant, x.Disturbance, and
x.Noise to the best estimates of these states (using the latest measurements) at the current control
interval.

index — Index of selected controller
positive integer

Index of selected controller in the cell array MPCArray, specified as a positive integer.

ym — Current measured outputs
row vector

Current measured outputs, specified as a row vector of length N,,,, where N, is the number of
measured outputs. If you are using custom state estimation, ym is ignored. If you set ym = [], then
mpcmoveMultiple uses the appropriate nominal value.

r — Plant output reference values
array

Plant output reference values, specified as a p-by-N, array, where p is the prediction horizon of the
selected controller and N, is the number of outputs. Row r (i, :) defines the reference values at step
i of the prediction horizon.

r must contain at least one row. If r contains fewer than p rows, mpcmoveMultiple duplicates the
last row to fill the p-by-N, array. If you supply exactly one row, therefore, a constant reference applies
for the entire prediction horizon.

If you set r = [], then mpcmoveMultiple uses the appropriate nominal value.

To implement reference previewing, which can improve tracking when a reference varies in a
predictable manner, r must contain the anticipated variations, ideally for p steps.

v — Current and anticipated measured disturbances
array

Current and anticipated measured disturbances, specified as a p-by-N,,4 array, where p is the
prediction horizon of the selected controller and N,,4 is the number of measured disturbances. Row
v (i, :) defines the expected measured disturbance values at step i of the prediction horizon.

Modeling of measured disturbances provides feedforward control action. If your plant model does not
include measured disturbances, use v = [].

v must contain at least one row. If v contains fewer than p rows, mpcmoveMultiple duplicates the
last row to fill the p-by-N,,4 array. If you supply exactly one row, therefore, a constant measured
disturbance applies for the entire prediction horizon.

If you set v =[], then mpcmoveMultiple uses the appropriate nominal value.

To implement disturbance previewing, which can improve tracking when a disturbance varies in a
predictable manner, v must contain the anticipated variations, ideally for p steps.

2-137

2 Functions

2-138

options — Override values for selected controller properties
mpcmoveopt object

Override values for selected properties of the selected MPC controller, specified as an options object
you create with mpcmoveopt. These options apply to the current mpcmoveMultiple time instant
only. Using options yields the same result as redefining or modifying the selected controller before
each call to mpcmoveMultiple, but involves considerably less overhead. Using options is
equivalent to using a Multiple MPC Controllers Simulink block in combination with optional input
signals that modify controller settings, such as MV and OV constraints.

Output Arguments

mv — Optimal manipulated variable moves
column vector

Optimal manipulated variable moves, returned as a column vector of length N,,,,, where N,,, is the
number of manipulated variables.

If the controller detects an infeasible optimization problem or encounters numerical difficulties in
solving an ill-conditioned optimization problem, mv remains at its most recent successful solution,
xc.LastMove.

Otherwise, if the optimization problem is feasible and the solver reaches the specified maximum
number of iterations without finding an optimal solution, mv:

* Remains at its most recent successful solution if the Optimizer.UseSuboptimalSolution
property of the controller is false.

» Is the suboptimal solution reached after the final iteration if the
Optimizer.UseSuboptimalSolution property of the controller is true. For more information,
see “Suboptimal QP Solution”.

info — Solution details
structure

Solution details, returned as a structure with the following fields.

Uopt — Optimal manipulated variable sequence
(P+1)'bY‘va array

Predicted optimal manipulated variable adjustments (moves), returned as a (p+1)-by-N,,, array,
where p is the prediction horizon and N,,, is the number of manipulated variables.

Uopt (i, :) contains the calculated optimal values at time k+i-1,fori = 1,...,p, where k is the
current time. The first row of Info.Uopt contains the same manipulated variable values as output
argument mv. Since the controller does not calculate optimal control moves at time k+p, Uopt (p
+1,:) is equal to Uopt(p,:).

Yopt — Optimal output variable sequence
(p+1)-by-N, array

Optimal output variable sequence, returned as a (p+1)-by-N, array, where p is the prediction horizon
and N, is the number of outputs.

mpcmoveMultiple

The first row of Info.Yopt contains the calculated outputs at time k based on the estimated states
and measured disturbances; it is not the measured output at time k. Yopt(1i, :) contains the
predicted output values at time k+i-1,fori = 1,...,p+1.

Yopt(i,:) contains the calculated output values at time k+i-1,fori = 2,...,p+1, where k is the
current time. Yopt (1, :) is computed based on the estimated states and measured disturbances.

Xopt — Optimal prediction model state sequence
(p+1)-by-N, array

Optimal prediction model state sequence, returned as a (p+1)-by-N, array, where p is the prediction
horizon and N, is the number of states in the plant and unmeasured disturbance models (states from
noise models are not included).

Xopt (i, :) contains the calculated state values at time k+i-1, fori = 2,...,p+1, where k is the
current time. Xopt (1, :) is the same as the current states state values.

Topt — Time intervals
column vector of length p+1

Time intervals, returned as a column vector of length p+1. Topt (1) = 0, representing the current
time. Subsequent time steps Topt (i) are given by Ts*(i-1), where Ts = MPCobj.Ts is the
controller sample time.

Use Topt when plotting the Uopt, Xopt, or Yopt sequences.

Slack — Slack variable
nonnegative scalar

Slack variable, €, used in constraint softening, returned as 0 or a positive scalar value.

* & =0 — All constraints were satisfied for the entire prediction horizon.

* &> (0 — At least one soft constraint is violated. When more than one constraint is violated, ¢
represents the worst-case soft constraint violation (scaled by your ECR values for each
constraint).

See “Optimization Problem” for more information.

Iterations — Number of solver iterations
positive integer | 0 | -1 | -2

Number of solver iterations, returned as one of the following:

* Positive integer — Number of iterations needed to solve the optimization problem that determines
the optimal sequences.
* 0 — Optimization problem could not be solved in the specified maximum number of iterations.

* —1 — Optimization problem was infeasible. An optimization problem is infeasible if no solution can
satisfy all the hard constraints.

¢ —2 — Numerical error occurred when solving the optimization problem.

QPCode — Optimization solution status
‘feasible' | 'infeasible' | 'unrealiable’

Optimization solution status, returned as one of the following:

2-139

2 Functions

+ ‘'feasible' — Optimal solution was obtained (Iterations > 0)

+ 'infeasible' — Solver detected a problem with no feasible solution (Iterations =-1)ora
numerical error occurred (Iterations = -2)

* 'unreliable' — Solver failed to converge (Iterations = 0). In this case, if
MPCobj.Optimizer.UseSuboptimalSolutionis false, u freezes at the most recent
successful solution. Otherwise, it uses the suboptimal solution found during the last solver
iteration.

Cost — Objective function cost
nonnegative scalar

Objective function cost, returned as a nonnegative scalar value. The cost quantifies the degree to
which the controller has achieved its objectives. For more information, see “Optimization Problem”.

The cost value is only meaningful when QPCode = 'feasible’, or when QPCode = 'feasible’
and MPCobj.0Optimizer.UseSuboptimalSolutionis true.

Tips

* Use the Multiple MPC Controllers Simulink block for simulations and code generation.

See Also
generateExplicitMPC | mpcmove | mpcstate | review | sim | setEstimator | getEstimator

Introduced in R2014b

2-140

mpcprops

mpcprops

Provide help on MPC controller properties

Syntax

mpcprops

Description

mpcprops displays details on the generic properties of MPC controllers. It provides a complete list of
all the fields of MPC objects with a brief description of each field and the corresponding default

values.

Examples

Describe properties of MPC objects

Display all fields of MPC objects, with related explanation.

MPC controller properties (with Ny output variables

Nu manipulated variables, a prediction horizon of p intervals,

and control horizon of m intervals):

Model -
A structure consisting of plant,
disturbance and noise models and their nominal values.
Model.Plant -
Plant model
(LTI or linear model from System Identification Toolbox).
Default: none, must be specified.

Model.Disturbance -
Model describing unmeasured input disturbances. Must be

an LTI or linear model from System Identification Toolbox.

Default: integrator (models step disturbance).

See also: "getindist" and "setindist" commands.
Model.Noise -

Model describing added output measurement noise. Must be

an LTI or linear model from System Identification Toolbox.

Default: unity gain (models white noise).
Model.Nominal -

Structure containing nominal state, input,
and output variable values:
Model.Nominal.X -

State of Model.Plant at the operating point.
Model.Nominal.U -

Input of Model.Plant at the operating point.
Model.Nominal.Y -

Output of Model.Plant at the operating point.
Model.Nominal.DX -

State derivative (for continuous time models) or update

2-141

2 Functions

(for discrete time models) at the operating point.
Default: all nominal values set to zero.

Define input signal types in Model.Plant.InputGroup:
ManipulatedVariables (or MV or Manipulated or Input) -
Indices of manipulated variables.
UnmeasuredDisturbances (or UD or Unmeasured) -
Indices of unmeasured disturbances.
MeasuredDisturbances (or MD or Measured) -
Indices of measured disturbances.
By default, all the plant inputs are manipulated variables.
See also: the "setmpcsignals" command.

Define output signal types in Model.Plant.OutputGroup:
MeasuredQutputs (or MO or Measured) -
Indices of measured outputs.
UnmeasuredQutputs (or U0 or Unmeasured) -
Indices of unmeasured outputs.
By default, all the plant outputs are measured outputs.
See also: the "setmpcsignals" command.

Ts -
Sample time of the MPC controller
(in the same time units as Model.Plant).
Default: if Model.Plant.Ts > 0, MPC.Ts = Model.Plant.Ts;
otherwise, MPC.Ts must be specified.

PredictionHorizon -
Intervals in the prediction horizon (scalar)
Default: 10 + max intervals of delay in Model.Plant

ControlHorizon -
Intervals in the control horizon.
Either a scalar or a vector of blocked moves.
Default: 2

Weights -
A structure defining dimensionless
MPC weights with the following fields:
Weights.ManipulatedVariables
(or MV or Manipulated or Input) -
Must be a (min 1, max p) x Nu matrix of weights
on the manipulated variables.
Default: zeros(1l,Nu)
Weights.ManipulatedVariablesRate
(or MVRate or ManipulatedRate or InputRate) -
Must be a (min 1, max p) x Nu matrix of weights on the rates
of the manipulated variables. MV Rates are defined as the
differences between current and ptrevious MV values.
Default: 0.1*ones(1,Nu)
Weights.OutputVariables (or OV or Output) -
Must be a (min 1, max p) x Ny matrix of weights
on the plant outputs.
Default: if Ny<=Nu, ones(1,Ny); otherwise,
only Nu outputs are weighted,
with preference on measured outputs.
Weights.ECR - Scalar weight on the slack variable
Equal Concern for Relaxation, used for constraint softening.

2-142

mpcprops

Default: le5*max(Weights)

Alternative weighting:

This syntax allows for off-diagonal weights, but requires the
weights to be identical at each prediction horizon step.
Using this syntax, Weights.MV={R}, where R is a Nu x Nu
symmetric and positive semi-definite matrix,

which must be constant over the prediction horizon.

The syntax for Weights.MVRate and Weights.OV is similar.

ManipulatedVariables (or MV or Manipulated or Input) -
Array of structures with fields:
MV (i) .Min -
1 to p dimensional vector of lower bounds on MV #i
Ddefault: -Inf
.Max -
1 to P dimensional vector of upper bounds on MV #i
Default: Inf
.MinECR -
1 to p dimensional vector of weights for softening the
lower bounds on MV #i
Default: 0, (hard constraint).
.MaxECR -
1 to p dimensional vector of weights for softening the
upper bounds on MV #i
Default: 0, (hard constraint).
.RateMin -
1 to p dimensional vector of lower bounds on the rate of MV #i
Default: -Inf
.RateMax -
1 to p dimensional vector of upper bounds on the rate of MV #i
Default: Inf
.MinECR -
1 to p dimensional vector of weights for softening the
lower bounds on the MV #i rate
Default: 0, (hard constraint).
.MaxECR -
1 to p dimensional vector of weights for softening the
upper bounds on the MV #i rate
Default: 0, (hard constraint).
.Target -
1 to p dimensional vector of target values for MV #i
Default: Model.Nominal.U
.Name -
Name of MV #i
Default: from Model.Plant.InputName
.Units -
String specifying the engineering units for MV #i
.ScaleFactor -
A scalar in engineering units.
Each MV will be divided by its scale factor to form the
dimensionless signal used in the MPC computations.

Default: 1

.Type -
Type of variable MV #i (default: 'continuous').
Type can be 'continuous', 'binary', 'integer',

or an array containing all the values MV #i can take.

2-143

2 Functions

OutputVariables (or 0OV or Controlled or Output) -

Array of structures with fields:

0v(i).Min -

1 to p dimensional vector of lower bounds on 0V #i.
Default: -Inf
.Max -
1 to p dimensional vector of upper bounds on 0V #i.
Default: Inf
.MinECR -
1 to p dimensional vector of weights for softening the
lower bounds on 0V #i.
Default: 1, (soft constraint).
.MaxECR -
1 to p dimensional vector of weights for softening the
upper bounds on 0V #i.
Default: 1, (soft constraint).
.Name -
Name of 0OV #i (default: Model.Plant.OutputName{i})
.Units -
String specifying the engineering units for 0V #i
.ScaleFactor -
A scalar in engineering units.
Each OV will be divided by its scale factor to form the
dimensionless signal used in the MPC computations.
Default: 1

DisturbanceVariables (or DV or Disturbance) -

Array of structures with fields:
DV(i).Name -

Name of DV #i (default: from Model.Plant.InputName).
.Units -

String specifying the engineering units for DV #i
.ScaleFactor -

A scalar in engineering units.

Each DV will be divided by its scale factor to form the

dimensionless signal used in all the MPC computations.

Default: 1

Note: DV consists in all the measured disturbance inputs

followed by all the unmeasured disturbance inputs.

Optimizer -

2-144

QP optimizer parameter structure with fields:
Optimizer.Algorithm -

Algorithm used by the solver.
Default: 'active-set'

Optimizer.ActiveSetOptions -

Active-set solver options.

Optimizer.InteriorPointOptions -

Interior-point solver options.

Optimizer.MixedIntegerOptions -

Mixed-integer solver options.

Optimizer.MinQutputECR -

Minimum value of output MinECR and MaxECR.
Default: 0

Optimizer.UseSuboptimalSolution -

If True the controller applies the sub-optimal solution
when the maximum number of iterations is exceeded.
Default: false.

mpcprops

Optimizer.CustomSolver -
If true the custom QP solver is used for simulation.
Default: false.

Optimizer.CustomSolverCodeGen -

If true the custom QP solver is used for code generation.

Default: false.

Notes - User's notes.
It can be a string or a cell array of strings.

UserData - Additional information or data.
It can be any MATLAB data type.

History - Date and time of the MPC object creation.

See the "mpc" command for construction syntax.

See Also
set | get

Introduced before R2006a

2-145

2 Functions

mpcqpsolver

(To be removed) Solve a quadratic programming problem using the KWIK algorithm

Note mpcgpsolver will be removed in a future release. Use mpcActiveSetSolver instead. For
more information, see “Compatibility Considerations”.

Syntax

[x,status] = mpcgpsolver(Linv,f,A,b,Aeq,beq,iA0,options)
[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options)
Description

[x,status] = mpcgpsolver(Linv,f,A,b,Aeq,beq,iA0,options) finds an optimal solution, Xx,
to a quadratic programming problem by minimizing the objective function:

J= %XTHX + fTx

subject to inequality constraints Ax = b, and equality constraints Aggx = beq. Status indicates the
validity of x.

[x,status,iA,lambda] = mpcqpsolver(Linv,f,A,b,Aeq,beq,iA0,options) also returns

the active inequalities, 1A, at the solution, and the Lagrange multipliers, Llambda, for the solution.

Examples

Solve Quadratic Programming Problem Using Active-Set Solver

Find the values of x that minimize
f(x)=0. SX% + x% - X1Xg — 2Xx1 — 6x2,
subject to the constraints
x1 =0
Xy = 0
X1 +x <2

-X1+2xp =2
2x1 +x9 < 3.

Specify the Hessian and linear multiplier vector for the objective function.

[1 -1; -1 21;

H
f=1-2; -6];

2-146

mpcgpsolver

Specify the inequality constraint parameters.

A
b

[10; 01; -1 -1; 1 -2; -2 -11;
[0; 0; -2; -2; -31;

Define Aeq and beq to indicate that there are no equality constraints.

[1;
zeros(0,1);

Aeq
beq

Find the lower-triangular Cholesky decomposition of H.

[L,p] = chol(H, 'lower');
Linv = inv(L);

It is good practice to verify that H is positive definite by checking if p = 0.

p=2=0

Create a default option set for mpcActiveSetSolver.

opt = mpcgpsolverOptions;

To cold start the solver, define all inequality constraints as inactive.
iA0 = false(size(b));

Solve the QP problem.

[x,status] = mpcgpsolver(Linv,f,A,b,Aeq,beq,iA0,opt);

Examine the solution, x.

X

X = 2x1
0.6667
1.3333

Check Active Inequality Constraints for QP Solution

Find the values of x that minimize
f(x) = BX% +0. SX% - 2x1xp — 3x1 + 4xy,
subject to the constraints

x120
X1 +Xx2=<5
X1+ 2xy<7.

Specify the Hessian and linear multiplier vector for the objective function.

2-147

2 Functions

(6 -2; -2 1];

H
f=1[-3; 4];

Specify the inequality constraint parameters.

[10; -1 -1; -1 -21;

A
b [0; -5; -71;

Define Aeq and beq to indicate that there are no equality constraints.

Aeq
beqg

[1;
zeros(0,1);

Find the lower-triangular Cholesky decomposition of H.

[L,p] = chol(H, 'lower");
Linv = inv(L);

Verify that H is positive definite by checking if p = 0.

p=2~0

Create a default option set for mpcgpsolver.

opt = mpcqgpsolverOptions;

To cold start the solver, define all inequality constraints as inactive.

iA0 = false(size(b));

Solve the QP problem.

[x,status,iA,lambda] = mpcqgpsolver(Linv,f,A,b,Aeq,beq,iA0,opt);

Check the active inequality constraints. An active inequality constraint is at equality for the optimal
solution.

iA
iA = 3x1 logical array
1

0
0

There is a single active inequality constraint.

View the Lagrange multiplier for this constraint.

lambda.ineqlin(1)

2-148

mpcgpsolver

ans = 5.0000

Input Arguments

Linv — Inverse of lower-triangular Cholesky decomposition of Hessian matrix
n-by-n matrix

Inverse of lower-triangular Cholesky decomposition of Hessian matrix, specified as an n-by-n matrix,
where n > 0 is the number of optimization variables. For a given Hessian matrix, H, Linv can be
computed as follows:

[L,p] = chol(H, 'lower");
Linv = inv(L);

H is an n-by-n matrix, which must be symmetric and positive definite. If p = 0, then H is positive
definite.

Note The KWIK algorithm requires the computation of Linv instead of using H directly, as in the
quadprog command.

f — Multiplier of objective function linear term
column vector

Multiplier of objective function linear term, specified as a column vector of length n.

A — Linear inequality constraint coefficients
m-by-n matrix | []

Linear inequality constraint coefficients, specified as an m-by-n matrix, where m is the number of
inequality constraints.

If your problem has no inequality constraints, use [].

b — Right-hand side of inequality constraints
column vector of length m

Right-hand side of inequality constraints, specified as a column vector of length m.
If your problem has no inequality constraints, use zeros(0,1).

Aeq — Linear equality constraint coefficients
q-by-n matrix | []

Linear equality constraint coefficients, specified as a g-by-n matrix, where q is the number of equality
constraints, and q <= n. Equality constraints must be linearly independent with rank (Aeq) = q.

If your problem has no equality constraints, use [].

beq — Right-hand side of equality constraints
column vector of length g

Right-hand side of equality constraints, specified as a column vector of length q.

If your problem has no equality constraints, use zeros (0,1).

2-149

2 Functions

2-150

i1A0 — Initial active inequalities
logical vector of length m

Initial active inequalities, where the equal portion of the inequality is true, specified as a logical
vector of length m according to the following:

» If your problem has no inequality constraints, use false(0,1).

+ For a cold start, false(m,1).

» For a warm start, set 1AQ(1) == true to start the algorithm with the ith inequality constraint
active. Use the optional output argument iA from a previous solution to specify 1A0 in this way. If
both iA0 (1) and iAQ(j) are true, then rows i and j of A should be linearly independent.
Otherwise, the solution can fail with status = -2.

options — Option set for mpcgpsolver
structure

Option set for mpcgpsolver, specified as a structure created using mpcgpsolverOptions.

Output Arguments

x — Optimal solution to the QP problem
column vector

Optimal solution to the QP problem, returned as a column vector of length n. mpcqpsolver always
returns a value for x. To determine whether the solution is optimal or feasible, check the solution
status.

status — Solution validity indicator
positive integer |0 | -1 | -2

Solution validity indicator, returned as an integer according to the following:

Value Description

> 0 X is optimal. status represents the number of iterations performed during optimization.

0 The maximum number of iterations was reached. The solution, x, may be suboptimal or
infeasible.

-1 The problem appears to be infeasible, that is, the constraint Ax = b cannot be satisfied.

-2 An unrecoverable numerical error occurred.

iA — Active inequalities
logical vector of length m

Active inequalities, where the equal portion of the inequality is true, returned as a logical vector of
length m. If iA(1) == true, then the ith inequality is active for the solution x.

Use 1A to warm start a subsequent mpcgpsolver solution.

lambda — Lagrange multipliers
structure

Lagrange multipliers, returned as a structure with the following fields:

mpcgpsolver

Field Description

ineqlin|Multipliers of the inequality constraints, returned as a vector of length n. When the
solution is optimal, the elements of ineqlin are nonnegative.

eglin |Multipliers of the equality constraints, returned as a vector of length g. There are no sign
restrictions in the optimal solution.

Tips
* The KWIK algorithm requires that the Hessian matrix, H, be positive definite. When calculating
Linv, use:

[L, p]l = chol(H, 'lower');

If p = 0, then H is positive definite. Otherwise, p is a positive integer.

* mpcgpsolver provides access to the QP solver used by Model Predictive Control Toolbox
software. Use this command to solve QP problems in your own custom MPC applications.

Algorithms

mpcqpsolver solves the QP problem using an active-set method, the KWIK algorithm, based on [1].
For more information, see “QP Solvers”.

Compatibility Considerations

mpcqgpsolver will be removed
Warns starting in R2020a

mpcgpsolver will be removed in a future release. Use mpcActiveSetSolver instead. There are
differences between these functions that require updates to your code.

Update Code
The following differences require updates to your code:

* FormpcActiveSetSolver, you define inequality constraints in the form Ax<b. Previously, for
mpcgpsolver, you defined inequality constraints in the form Ax=b

* For mpcActiveSetSolver, you specify solver options with a structure created using the
mpcActiveSetOptions function. Previously, for mpcqpsolver, you created an option structure
using the mpcgpsolverOptions function. These option structures contain the same options,
though some option names have changed.

* By default, you pass the Hessian matrix to mpcActiveSetSolver. Previously, you passed the
inverse of lower-triangular Cholesky decomposition (Linv) of the Hessian matrix to
mpcgpsolver. To continue to use Linv, set the UseHessianAsInput field of the structure
returned by mpcActiveSetSolver to false.

* When your QP problem has either no inequality constraints or no equality constraints, the
corresponding A or Aeq input argument to mpcActiveSetSolver must be zeros(0,n), where n
is the number of decision variables. Previously, for mpcqgpsolver, you specified these input
arguments as [].

This table shows some typical usages of mpcgpsolver and how to update your code to use
mpcActiveSetSolver instead.

2-151

2 Functions

2-152

Not Recommended

Recommended

opt = mpcgpsolverOptions;
[x,status] = mpcgpsolver(Linv,f,A,b,...
Aeq,beq, 1iA0,opt);

opt = mpcActiveSetOptions;

opt.UseHessianAsInput = false;

[x,status] = mpcActiveSetSolver(Linv,f,...
-A,-b,Aeq, beq,iA0,0pt);

Alternatively, you can use the Hessian matrix, H.
opt = mpcActiveSetOptions;

[x,status] = mpcActiveSetSolver(H,f,...
-A, -b,Aeq, beq,iA0,o0pt);

opt = mpcgpsolverOptions('single');
[x,status] = mpcgpsolver(Linv,f,A,b,...
Aeq,beq, iA0,opt);

opt = mpcActiveSetOptions('single');

opt.UseHessianAsInput = false;

[x,status] = mpcActiveSetSolver(Linv,f,...
-A,-b,Aeq, beq,iA0,o0pt);

opt = mpcgpsolverOptions;

opt.MaxIter = 300;

opt.FeasibilityTol = le-5;

[x,status] = mpcgpsolver(Linv,f,A,b, ...
Aeq, beq, 1A0,0pt);

opt = mpcActiveSetOptions;

opt.UseHessianAsInput = false;

opt.MaxIterations = 300;

opt.ContraintTolerance = le-5;

[x,status] = mpcActiveSetSolver(Linv,f,...
-A, -b,Aeq,beq,iA0,opt);

[x,status] = mpcgpsolver(Linv,f,[],...
zeros(0,1),Aeq,beq,iA0,0pt);

n = length(f);

opt.UseHessianAsInput = false;

[x,status] = mpcActiveSetSolver(Linv,f, ...
zeros(0,n),zeros(0,1),Aeq,beq,iA0,opt);

[x,status] = mpcgpsolver(Linv,f,A,b,...
[1,zeros(0,1),1iA0,0pt);

n = length(f);

opt.UseHessianAsInput = false;

[x,status] = mpcActiveSetSolver(Linv,f, ...
-A,-b,zeros(0,n),zeros(0,1),1iA0,opt);

References

[1] Schmid, C., and L.T. Biegler. ‘Quadratic Programming Methods for Reduced Hessian SQP’.
Computers & Chemical Engineering 18, no. 9 (September 1994): 817-32. https://doi.org/

10.1016/0098-1354(94)E0001-4.

Extended Capabilities

C/C++ Code Generation

Generate C and C++ code using MATLAB® Coder™.

Usage notes and limitations:

* You can use mpcgpsolver as a general-purpose QP solver that supports code generation. Create

the function myCode that uses mpcgpsolver.

function [outl,out2] = myCode(inl,in2)
s#codegen

[x,status] = mpcgpsolver(Linv,f,A,b,Aeq,Beq,iA0,options);

Generate C code with MATLAB Coder.

mpcgpsolver

func = 'myCode’;
cfg = coder.config('mex'); % or 'lib', 'dll'
codegen('-config',cfg, func,'-0',func);

» For code generation, use the same precision for all real inputs, including options. Configure the
precision as 'double’ or 'single' using mpcgpsolverOptions.

See Also
mpcgpsolverOptions | mpcActiveSetSolver | mpcActiveSetOptions

Topics
“QP Solvers”

Introduced in R2015b

2-153

2 Functions

2-154

mpcqgpsolverOptions

(To be removed) Create default option set for mpcgpsolver

Note mpcgpsolverOptions will be removed in a future release. Use mpcActiveSetOptions
instead. For more information, see “Compatibility Considerations”.

Syntax

options = mpcgpsolverOptions
options = mpcgpsolverOptions(type)
Description

options = mpcgpsolverOptions creates a structure of default options for mpcqgpsolver, which
solves a quadratic programming (QP) problem using the KWIK algorithm.

options = mpcgpsolverOptions(type) creates a default option set using the specified input
data type. All real options are specified using this data type.

Examples

Create Default Option Set for MPC QP Solver

opt = mpcgpsolverOptions;

Create and Modify Default MPC QP Solver Option Set

Create default option set.

opt = mpcqgpsolverOptions;

Specify the maximum number of iterations allowed during computation.
opt.MaxIter = 100;

Specify a feasibility tolerance for verifying that the optimal solution satisfies the inequality
constraints.

opt.FeasibilityTol = 1.0e-3;

mpcgpsolverOptions

Create Option Set Specifying Input Argument Type

opt = mpcgpsolverOptions('single');

Input Arguments

type — MPC QP solver input argument data type
‘double’ (default) | 'single'’

MPC QP solver input argument data type, specified as either 'double' or 'single’. This data type

is used for both simulation and code generation. All real options in the option set are specified using
this data type, and all real input arguments to mpcqpsolver must match this type.

Output Arguments

options — Option set for mpcqgpsolver
structure

Option set for mpcgpsolver, returned as a structure with the following fields:

Field Description Default

DataType |Input argument data type, specified as either 'double' or 'single'. This | 'double’
data type is used for both simulation and code generation, and all real input
arguments to mpcgpsolver must match this type.

MaxIter |Maximum number of iterations allowed when computing the QP solution, 200
specified as a positive integer.

Feasibil |Tolerance used to verify that inequality constraints are satisfied by the 1.0e-6
ityTol optimal solution, specified as a positive scalar. A larger FeasibilityTol
value allows for larger constraint violations.

Integrit |Indicator of whether integrity checks are performed on the mpcqpsolver |true
yChecks |input data, specified as a logical value. If IntegrityChecks is true, then
integrity checks are performed and diagnostic messages are displayed. Use
false for code generation only.

Compatibility Considerations

mpcgpsolverOptions will be removed
Warns starting in R2020a

mpcqgpsolverOptions will be removed in a future release. Use mpcActiveSetOptions instead.
There are differences between these functions that require updates to your code.

Update Code
To update your code:

* Change the function name from mpcqpsolverOptions to mpcActiveSetOptions. The syntaxes
are equivalent.

* Some field names of the returned structure have changed. The default field values are the same.
This table shows the new property names.

2-155

2 Functions

2-156

Previous Property Name

New Property Name

MaxIter

MaxIterations

FeasibilityTol

ConstraintTolerance

* The returned structure of mpcActiveSetOptions contains the new field UseHessianAsInput.
To continue to use the inverse of the lower-triangular decomposition of the Hessian matrix with
mpcActiveSetSolver, you must set UseHessianAsInput to false.

For syntax examples showing how to update your code, see mpcqpsolver.

See Also

mpcgpsolver | mpcActiveSetSolver | mpcActiveSetOptions

Introduced in R2015b

mpcverbosity

mpcverbosity

Change toolbox verbosity level

Syntax
mpcverbosity on
mpcverbosity off

old status = mpcverbosity(new status)
mpcverbosity

Description

mpcverbosity on enables messages displaying default operations taken by Model Predictive
Control Toolbox software during the creation and manipulation of model predictive control objects.

By default, messages are turned on.

mpcverbosity off turns messages off.

old status = mpcverbosity(new status) sets the verbosity level to the specified value,

new status. The function returns the original value of the verbosity level as old status. Specify

new status as either 'on' or 'off' .

mpcverbosity shows the verbosity status.

Examples

Turn MPC verbosity off

Turn verbosity off and suppress output argument.

mpcverbosity off;
Turn MPC verbosity on
Turn verbosity on and save the old status in the workspace variable old

old = mpcverbosity on;

Show MPC verbosity status

Show MPC verbosity and suppress output argument.

2-157

2 Functions

2-158

mpcverbosity;
MPC verbosity is off

Input Arguments

new_status — new MPC verbosity status
‘on' (default) | 'off'

Char array, being either 'on' or 'off' .
Example: 'off'
Output Arguments

old_status — old MPC verbosity status
‘on' (default) | 'off'

Char array, being either 'on' or 'off' .

Example: 'off'

See Also
mpc

Introduced before R2006a

nlmpcmove

nilmpcmove

Compute optimal control action for nonlinear MPC controller

Syntax

mv = nlmpcmove(nlmpcobj,x,lastmv)

mv = nlmpcmove(nlmpcobj,x,lastmv, ref)

mv = nlmpcmove(nlmpcobj,x,lastmv, ref,md)

mv = nlmpcmove(nlmpcobj,x,lastmv, ref,md,options)
[mv,opt] = nlmpcmove()
[mv,opt,info] = nlmpcmove()

mv nlmpcmove (nlmpcMSobj, x, lastmv)

mv nlmpcmove(nlmpcobj,x, lastmv,simdata)
[mv,simdata] = nlmpcmove()
[mv,simdata,info] = nlmpcmove()

Description

Nonlinear MPC

mv = nlmpcmove(nlmpcobj,x, lastmv) computes the optimal control action for the current time.
To simulate closed-loop nonlinear MPC control, call nlmpcmove repeatedly.

mv = nlmpcmove(nlmpcobj,x,lastmv, ref) specifies reference values for the plant outputs. If
you do not specify reference values, nlmpcmove uses zeros by default.

mv = nlmpcmove(nlmpcobj,x,lastmv, ref,md) specifies run-time measured disturbance values.
If your controller has measured disturbances, you must specify md.

mv = nlmpcmove(nlmpcobj,x, lastmv, ref,md,options) specifies additional run-time options
for computing optimal control moves. Using options, you can specify initial guesses for state and
manipulated variable trajectories, update tuning weights at constraints, or modify prediction model
parameters.

[mv,opt] = nlmpcmove() returns an nlmpcmoveopt object that contains initial guesses for
the state and manipulated trajectories to be used in the next control interval.

[mv,opt,info] = nlmpcmove() returns additional solution details, including the final
optimization cost function value and the optimal manipulated variable, state, and output trajectories.

Multistage Nonlinear MPC

mv = nlmpcmove(nlmpcMSobj,x, lastmv) computes the optimal control action for the current
time. To simulate closed-loop nonlinear MPC control, call nlmpcmove repeatedly.

mv = nlmpcmove(nlmpcobj,x,lastmv,simdata) specifies the additional simdata structure,
which contains measured disturbances, run-time bounds, parameters for the state and stage
functions, and initial guesses for state and manipulated variable trajectories. In general use the
following syntax to return a new simdata (containing updated initial guesses) as a second output
argument.

2-159

2 Functions

[mv,simdata] = nlmpcmove () returns an updated simdata structure that contains new
initial guesses for the state and manipulated trajectories to be used in the next control interval. Good
initial guesses are